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Abstract.  A key problem of functional-structural plant modeling is the partitioning of resources between 
plant components. One approach to addressing this problem is based on the simulation of transport 
between the sources and sinks of a resource.  To this end, we exploit an analogy between the flow of 
resources in a plant and the flow of currents in an electric circuit, and we present a computationally 
effective method for solving this circuit.  The method lends itself to a straightforward implementation 
using L-systems, and is thus well suited for simulating the partitioning of resources in spatially-explicit 
models of growing plants. 
 

1. INTRODUCTION 

We present a method for simulating the acquisition, transport, and partitioning of a 
resource within a plant.  This method operates at the level of plant architecture, with 
a plant being viewed as a branching arrangement of metamers or phytomers (Bell 
1991, Room et al. 1994).  A metamer consists of an internode with the associated 
lateral organs: buds, leaves, flowers, or fruits (Fig. 1a). We conceptualize each 
metamer as a conduit element with a single source or sink attached laterally at the 
distal end of the conduit element (Fig. 1b).  More complex metamers, which may 
include several lateral organs, or store resources in the internodes, can be modeled 
by combining individual sources or sinks into one resultant component. The 
simulation method exploits an analogy between pressure-driven fluid flow in plant 
vasculature and current flow in an electric circuit (Fig. 1c).  This circuit may be 
nonlinear, which means that parameters of the components depend on the potentials 
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and currents in the circuit. It may also be non-stationary, with parameters depending 
on time either explicitly or as a result of the accumulation of resources in plant 
organs. Finally, the circuit may have a dynamic structure, which means that its 
configuration changes over time, consistent with the addition or loss of metamers in 
the course of plant development.  

A circuit, such as that shown in Fig. 1c, represents a snapshot of the modeled 
plant at a particular point in time. During the simulation, this snapshot is used to 
calculate flow rates and the amounts of the resource transported from sources to 
sinks over a small time increment. The circuit is then updated to reflect the resulting 
changes, and the next iteration of the simulation proceeds.   
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Figure 1. A branch axis (a) is abstracted into an assembly of conduits, sources and sinks (b), 
and a corresponding electric circuit (c).  The axis is a sequence of metamers, each of which 
consists of an internode and optional lateral organs, such as leaves and fruits, attached at the 
distal end of the internode. Metamer k is shown in grey. Symbols:  rsk – resistance of the 
conduit; ek – electomotive force of the source or sink; rpk – internal resistance of the source or 
sink, vk – node potential associated with metamer k. 
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2. THE ANALOGY BETWEEN A PLANT AND AN ELECTRIC CIRCUIT 

Our presentation is expressed in terms of carbon partitioning, although a similar 
approach may apply to other resources, such as water. According to the Münch 
theory, carbon flow in the phloem is driven by differences in hydrostatic pressure 
(hydrostatic potential) between sources and sinks (Salisbury and Ross 1992, Nobel 
2005).  This leads to the following simplified formula for the volume flow rate Ik of 
the water solution of photoassimilates (Thornley and Johnson 1990, Minchin et al. 
1993, Bidel et al. 2000, Daudet et al. 2002):  

Hk

kk
k R

PPI −
= −1 .                                                  (1) 

The nominator Pk–1 – Pk represents the pressure difference between the proximal and 
distant node of internode k, and the denominator RHk is the hydraulic resistance of 
phloem in internode k to the movement of the solution.  This resistance is 
determined by Poiseuille’s law (Nobel 2005), 
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where lk is the internode length, η is the solution viscosity, nk is the number of sieve 
tubes in the internode, and ρk  is the radius of the sieve tubes (the tubes are assumed 
to have circular cross-sections and the same radius).  

Equation (1) is formally equivalent to Ohm’s law,  

k

kk
k r

vvi −
= −1 ,                                                (3) 

which states that the electric current ik flowing through a resistive element is 
proportional to the difference of the potentials vk–1 – vk  at the element’s terminals, 
and inversely proportional to the element’s resistance rk.  Furthermore, the mass of 
the solution flowing into any node is equal to the mass flowing out of it (the mass is 
conserved), and the sum of pressure differences measured along any closed loop is 
equal to zero.  These are hydraulic analogues of Kirchhoff’s laws for electricity 
(Ramakalyan 2005).  The analogies between the laws governing fluid flow and Ohm 
and Kirchhoff’s laws make it possible to describe the transport of carbohydrates in a 
plant in terms of electric circuits, for which a wealth of useful results, such as rules 
for transforming circuits to an equivalent form, is readily available. The 
correspondence between hydraulic and electric entities is summarized in Table 1.  
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Table1. Analogies between hydraulic/physiology end electric entities 

Physiological/hydraulic entity Electric entity Symbol 
mass or volume charge q 

mass or volume flow rate a) current i 
hydrostatic potential, pressure electric potential v 

pressure difference potential difference, voltage b) v, e 
hydraulic resistance resistance r 

hydraulic conductance conductance g 
a) Flow rate is the mass or volume that flows past a given cross sectional area per unit time. 
b) We also use the term electromotive force (EMF), to characterize voltage sources.   

3. SOLVING LADDER AND BRANCHING LADDER CIRCUITS  

The circuit representing a single branch (Fig 1c) is an example of a ladder circuit, 
i.e., a circuit resulting from a sequence of repetitive connections of electric 
components in series and in parallel (Ramakalyan 2005).  Let us first assume that 
these components are linear, meaning that the resistances and electromotive forces 
do not depend on potentials and currents. We can then solve the circuit, i.e., find all 
potentials and currents, in a manner that only requires a local information transfer 
between adjacent segments of the ladder (adjacent metamers). Furthermore, only 
unilateral information flow, either in the basipetal or in the acropetal direction, is 
needed in each phase of computation. This type of information transfer is well 
supported by L-systems with fast information transfer (Karwowski and 
Prusinkiewicz 2003; see also Chapter 3 of this book), which therefore provide a 
convenient framework for implementing the solu-tion to the ladder circuits as a part 
of functional-structural plant models (Section 5).     

The solution makes use of the rules for series or parallel connection of linear 
electric circuits (Fig. 2).  These rules represent a special case of Thévenin’s theorem, 
which states that it is possible to simplify any linear circuit, no matter how complex, 
to an equivalent circuit consisting of a single source of electromotive force and a 
series resistance (Ramakalyan 2005). 
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Figure 2. Rules for finding circuits equivalent to a series (a) and parallel (b) connection of 
linear components 
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Figure 3. Solving a ladder circuit by a sequence of  folding (a-d) and unfolding (e-h) 
operations.  Down arrows labeled v1, v2,...,vn  indicate node potentials, computed one after 
another as the circuit is unfolded. 

The solution to a ladder circuit is obtained in two phases, which we term folding and 
unfolding of the circuit (Fig. 3).  During the folding phase (Fig. 3a-d), pairs of distal 
(rightmost) elements of the ladder are recursively reduced to simpler elements using 
the rules of Fig 2.  This reduction proceeds until the simple circuit shown in Fig. 3d 
is found. Its node potential v1 is equal to E1, since there is no current flowing in that 
circuit, and thus there is no voltage drop on the resistance Rp1 (Fig. 3e).  To find 
potential v2 (Fig 3f), we formally treat potential v1 as an electromotive force. 
Referring to Fig. 2b, we then calculate v2 as 
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Given potential v2, we unfold the next element of the ladder and calculate potential 
v3 (Fig. 3g). By continuing this process recursively, we find all the remaining node 
potentials (Fig. 3h).  With the potentials known, all currents can be calculated using 
Ohm’s law.   

An extension of this method to a branching ladder circuit is illustrated in Fig. 4. 
The terminal axes are folded separately up to the branching point B (Fig. 4a,b). The 
circuits rs1 Rp1 E1 and rs2 Rp2 E2 that comprehensively represent these axes are then 
combined into a single equivalent circuit Rs12 Rp12 E12 (Fig 4c) using the 
transformation rule of Fig. 2b. For technical reasons related to the L-system 
implementation, this operation is combined with a folding step, resulting in the 
circuit shown in Fig. 4d.   The resulting ladder is folded and unfolded as in Figure 3 
to yield the potential v of the branching point (Fig 4e).  At this stage, the circuit Rs12 
Rp12 E12 is reverted to the parallel connection of its components rs1 Rp1 E1 and rs2 Rp2 
E2, so that the node potentials v1 and v2 of the first metamer in each axis can be 
found (Fig 4f). The remaining potentials and currents are then calculated by 
unfolding each axis independently (Fig. 4g).  Circuits with many branching  points 
are solved in a similar way, by repetitively merging axes into equivalent circuits 
while folding, and reverting these circuits to parallel connections of axes while 
unfolding.  
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Figure 4. Generalization of the folding-unfolding process to a ramified circuit 
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4. SOLVING NONLINEAR CIRCUITS  

The method presented above only applies to linear circuits, but circuits that model 
sink-source relations in a plant are likely to be nonlinear.  We solve nonlinear 
circuits using an iterative method, in which the solution is sought through a series of 
linear approximations of circuit components.  Mathematically, this approach 
amounts to numerically solving  a system of nonlinear equations using the Newton-
Raphson method (Press et al. 1992).   

Let us consider the simple linear circuit shown in Fig. 5a.  To solve it, we may 
first divide it into two parts, as shown in Fig. 5b.  The dependence of currents i1 and 
i2 on the node potentials v1, v2 is then expressed by the equations: 

srr
evi

+
−

=
1

11
1       and     

2

22
2 r

evi −
= .                                    (5) 

The behavior of each part is represented graphically by a straight line in Fig. 5c.  If 
we now reconnect both parts to return to the circuit of Fig. 5a, the node potentials 
will be the same, v1 = v2 = v,  while the currents flowing into each branch will add 
up to 0, yielding –i1 = i2 = i.  The solution to the circuit of Fig. 5a will thus be 
represented by the point in which the lines characterizing both parts intersect.   
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Figure 5. Graphical solution of a simple circuit.  The circuit (a) is divided into two parts (b), 
represented by straight lines in the voltage-current plane (c).  The solution to the circuit (a) 
corresponds to the intersection point (i, v)  of these lines.   

The above method of solving a circuit by intersecting voltage-current characteristics 
carries over to nonlinear circuits. For example,  Fig. 6a depicts the case in which the 
source (e1, r1) and the conduit rs are linear, but the sink (e2, r2) is not.  We find the 
solution iteratively, beginning with an initial estimate v(1) of potential v.  First, we 
approximate the sink by the best-fitting linear circuit at the potential value v(1).  This 
linearized sink circuit is represented by the tangent to the function i2(v) at the point 
(v(1), i2(v(1))) (Fig. 6b). Its conductance and electromotive force can thus be 
expressed as: 
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The circuit consisting of the source, conduit and linearized sink is then solved as in 
Fig. 5, which leads to a new estimate v(2) of the node potential v, and a corresponding 
estimate i’(v(2)) of the current in the circuit (Fig. 6c).  A comparison of this latter 
estimate with the actual current i2(v(2)) that would flow through the nonlinear sink 
given node potential v(2) shows a significant error (Fig. 6c).  The sink is thus 
linearized again, this time at the point (v(2), i2(v(2))) (Fig 6d), which leads to the next 
estimate v3 of the node potential v (Fig 6e).  After one more iteration step, a solution 
with an acceptably small error is found, ending the iteration (Fig. 6f).   
One advantage of the Newton-Raphson method is that it extends to systems with 
many non-linear components (Press et al. 1992). On the other hand, like many other 
iterative methods, it is not guaranteed to converge.  In the practice of functional-
structural modeling (Allen et al. 2005), we occasionally experienced convergence 
problems, especially when adding new metamers to a developing structure.  These 
problems could be alleviated by properly choosing the initial values of resistances in 
the new metamers (small conduit resistance rs and large source/sink resistance rp), 
then adjusting them gradually to the desired values to avoid sudden jumps in the 
solution.   
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Figure 6. Illustration of the Newton-Raphson method for solving a non-linear circuit 

5. IMPLEMENTATION  

The described method for solving a circuit can be incorporated into functional-
structural plant models by organizing the simulation into two iteration loops (Fig. 7). 
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This is similar to the organization of the biomechanical simulation presented in 
Chapter 3 of this book. In the inner loop, potentials and currents at a given 
simulation time are calculated iteratively, by linearizing the circuit and solving it 
using the folding and unfolding operations. The iteration proceeds until the 
cumulative error stemming from the linearization of non-linear circuit components is 
sufficiently small.  Once the currents are found, charges are transported between 
sources and sinks in a time-advancing forward integration step within the outer 
iteration loop.  Additional charges and changes to the circuit structure may also be 
introduced in this step, for instance to simulate photosynthesis or to create new 
metamers at branch apices. This leads to a modified circuit, in which the values of 
component parameters reflect the new charges, and the structure reflects the possible 
addition or loss of metamers.  The updated circuit is then ready for the next iteration 
cycle within the inner loop.   
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 linearize  

transport 
resource, 
update 
circuit 

develop 
or modify 
structure 

large 
error 

small 
error 

Figure 7. Phases of simulation.  Each phase corresponds to an L-system derivation step.  The 
L-system string is scanned from right to left in the folding phase, and from left to right in the 
remaining phases.   

The computations can be conveniently specified in the L-system-based L+C 
modeling language (Karwowski and Prusinkiewicz, 2003; see also Chapter 3).  A 
key data structure describes a linear circuit: 

struct LinCircuit 
{ 
   float e; // EMF 
   float r; // resistance 
}; 

The function in_parallel() implements the parallel connection of two linear 
circuits according to Fig. 2b: 

LinCircuit in_parallel(LinCircuit c1,LinCircuit c2) 
{ 
  LinCircuit c; 
  c.e = (c1.e * c2.r + c2.e * c1.r) / (c1.r + c2.r); 
  c.r = (c1.r * c2.r) / (c1.r + c2.r); 
  return c; 
} 

The LinCircuit data structure is used as the basis for defining a metamer: 
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struct MetamerData 
{ 
  int type;  // e.g. leaf, fruit, axis start, end 
  float rs;  // conduit/internode resistance 
  LinCircuit cp;  // source/sink EMF ep, resistance rp 
  LinCircuit ceq; // circuit resulting from folding 
  float v;  // node potential 
  float i;       // current through source/sink 
  float q;  // accumulated charge 
  /* ... other characteristics, e.g. age, size */ 
  void update_charge(); // account for flow, photosynth. 
  void linearize_circuit(); // implements Eq. 8.  
}; 
 
module M(MetamerData); 

The update_charge() function in the MetamerData structure is called in 
each time-advancing simulation phase to increment or decrement the charge q 
accumulated in the metamer. This increment or decrement is proportional to the 
current i and, in the case of leaves, the rate of photosynthesis.  The updated charge 
is a parameter to a function that determines the nonlinear potential-current 
characteristic of the source or sink.  Some methods for specifying such functions are 
presented by Allen et al. (2005); see also Chapter 12 of this book. Given that 
characteristic, the linearize_circuit() function is called to calculate the 
electromotive force and resistance of the linear circuit cp that approximates the sink 
or source at node potential v. Once these values have been determined for all 
metamers, the resulting ladder circuit is ready to be solved by the folding and 
unfolding operations.   

Folding of an axis begins with the production 

M(md) : 
{ 
  if (md.type == end) 
  { 
    md.ceq = md.cp; 
    produce M(md); 
  } 
} 

which formally defines the result ceq of folding the most distal metamer of this 
axis.  The folding then proceeds by scanning the L-system string from right to left, 
and applying the following production to the remaining metamers: 

M(md) >> M(mdr) : 
{ 
  mdr.ceq.r += mdr.rs;  
  md.ceq = in_parallel(md.cp, mdr.ceq);  
  produce M(md); 
} 
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This production implements the operations shown in Fig. 3 a-d.  Branching points 
are handled separately, according to Fig. 4 b-d. Modules SB (start branch) and EB 
(end branch) enclose a lateral branch. 

M(md) >> SB() M(mdr2) EB () M(mdr1) : 
{ 
  mdr1.ceq.r += mdr1.rs; 
  mdr2.ceq.r += mdr2.rs; 
  LinCircuit mdr = in_parallel(mdr1.ceq, mdr2.ceq); 
  md.ceq = in_parallel(md.cp, mdr); 
  produce M(md); 
} 

In the unfolding phase, the node potentials of all metamers are found by scanning 
the string from left to right.  Unfolding is initiated by the production  

M(md) : 
{ 
  if (md.type == start) 
  { 
    md.v = md.ceq.e; 
    produce M(md); 
  } 
} 

which brings computation to the state illustrated in Fig. 3e.  Computation proceeds 
according to Fig. 3f-h, through the repetitive application of production 

M(mdl) << M(md) : 
{ 
  LinCircuit ml = {mdl.v, md.rs}; 
  md.v = in_parallel(ml,md.ceq).e; 
  produce M(md); 
} 

Since the left context in L-systems refers to the proximal neighbor irrespective of 
the possible ramifications of the modeled structure, no special production is needed 
to handle branching points during unfolding.   

Given the node potentials v, all currents in the linearized circuit can be found 
using Ohm’s law and compared with the values determined by the characteristics of 
nonlinear sources / sinks for the same values of node potentials.  The sum of the 
absolute values of the differences defines the cumulative error due to the 
linearization.  If this error exceeds a predefined limit, the circuit is re-linearized at 
the new node potentials, and a new estimate of the solution is found in the next 
round of iteration.  Once the cumulative error becomes sufficiently small, the 
update_charge() function is called for each metamer, initiating the next cycle 
of the simulation. 

The above outline of the L-system implementation of the resistance-transport-
driven resource allocation model shows that the calculations can be specified in a 
compact manner, directly reflecting the essence of the method. Compared to 
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implementations using an external equation solver, the integration of numerical 
calculations into an L-system-based model offers the benefit of automatically 
updating the system of equations as the simulated structure develops.  This is an 
important advantage when constructing functional-structural models of growing 
plants. 

6. CONCLUSIONS  

The presented method and its L-system implementation offer a practical method for 
simulating resource flow and partitioning in fixed and growing branching plant 
structures. The method exploits an analogy between the flow of resources through 
plant vasculature and current flow in an electric circuit. For linear circuits, 
computation of potentials and flow rates proceeds in two phases.  During the  
folding phase, the circuit is reduced to a very simple one, for which the node 
potential can easily be found.  During the unfolding phase, node potentials of all 
metamers are computed in a sequence, from proximal to distal, with each subsequent 
value being determined on the basis of the previous one. This organization of 
computation is well suited for implementation using L-systems, because it only 
relies on information transfer between neighboring metamers.  Furthermore, in both 
the folding and unfolding phases, the information flows in one direction, either 
acropetally or basipetally, which leads to a particularly effective implementation 
using L-systems with fast information transfer.  Formally, the presented method is 
related to the method for solving tridiagonal systems of linear equations using L-
systems (Federl and Prusinkiewicz, 2004), which in turn is based on Gaussian 
elimination (Press et al. 1992). We note, however, that our method extends to 
branching structures, for which the equation systems are no longer tridiagonal. 
Nonlinear circuits are solved numerically with the Newton-Raphson method, using a 
sequence of linear approximations to the given circuit.  An application example is 
given by L-PEACH, a generic functional-structural model of tree development 
driven by carbon partitioning (Allen et al. 2005, see also Chapter 12).   
Several problems remain open for further research.  They include: 
o a refinement of the presented model of carbon partitioning, in which the 

assumption of the constant concentration of carbohydrates in the water would 
be removed, 

o extensions and applications of the model to the transport and partitioning of 
other resources, such as water and nitrogenous compounds, 

o development of functional-structural models that would incorporate transport 
and partitioning of several resources. 
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