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SUMMARY

The aim of the present research was to study intra-canopy variability in fruit growth under conditions of low fruit-to-
fruit competition in peach trees grafted on rootstocks with differing size-controlling capacity. The experiment was
conducted on adult peach trees of two cultivars, each grafted on five rootstocks. Tree canopies were divided vertically
into five layers. The diameter of 12 fruit per canopy layer was measured early in the growing season and at harvest. At
harvest, the fresh weight of each selected fruit was also determined. After harvest, thirty shoots per tree bearing the
selected fruit were harvested, and several parameters related to local carbon source availability, competition between
vegetative and reproductive organs, vigour of the fruiting shoot, and position of the fruit on the fruiting shoot were
measured. The results demonstrated that fruit variability within peach trees is very large, even when fruit-to-fruit
competition is low. Fruit size at harvest decreased significantly and progressively from the top layers to the bottom
layers of the canopy. Fruit growth was positively correlated with specific leaf weight, leaf area, and vigour of the
fruiting shoot, and was negatively correlated with the vigour of current-season shoot growth on the fruiting shoot.
However, the relative importance of each parameter depended on the cultivar. Rootstock affected the relationship
between fruit growth and the measured parameters, and some rootstocks appeared to limit the maximum potential
fruit growth rate. The measured parameters did not explain all the intra-canopy variability in fruit growth, suggesting
that other factors also played a role. Interestingly, fruit size within 1 month of full bloom increased progressively from

the top to the bottom of the canopy.

everal studies on peach trees have demonstrated that

large intra-canopy variability occurs in fruit growth
(Genard and Bruchou, 1993; Weibel, 1999) and in
qualitative fruit characteristics (Forlani et al., 2002;
Lewallen and Marini, 2003). Similar results have also
been reported for other fruit tree species (Crisosto et al.,
1997; Smith et al., 1997; Broom et al., 1998; Barry et al.,
2004).

A lack of understanding of the factors affecting the
variability of peach fruit growth within the canopy
limited the early sink-driven PEACH model (Grossman
and Delong, 1994) which partitioned carbon among
compartments consisting of organ types (fruit, shoots,
trunk, and roots) and ignored the intra-canopy
variability of individual organs. The need for more
detailed functional-structural models of plant growth,
such as L-PEACH (Allen et al., 2005), requires a better
understanding of the factors that affect the growth of
each organ within the plant. Indeed, in L-PEACH, each
organ represents an elemental source or sink of
carbohydrate, and individual calculations are made for
each of them.

Fruit trees can be considered as a collection of semi-
autonomous, interacting growing organs (sinks) that
compete for resources (Grossman and Delong, 1994).

*Author for correspondence.

Fruit generally are considered to be very strong sinks for
carbohydrates (Grossman and Delong, 1995a).
However, like all other tree organs, fruit are also
subjected to a complex network of source-sink
relationships that can decrease their growth below their
genetically-determined maximum potential growth rate
(Grossman and DelJong, 1995b). In particular, local
source-sink relationships within the canopy may have
important implications for fruit growth and quality, since
branches have been demonstrated to be partially
autonomous for carbohydrates (Marsal et al., 2003).
Indeed, several authors have related the intra-canopy
variability of peach fruit characteristics to the
heterogeneity of light distribution within the canopy
(Bible and Singha, 1993; Marini et al., 1993; Luchsinger
et al.,2002; Lewallen and Marini, 2003). In addition to the
availability of light inside the canopy compartment
where the fruit are growing, other major factors related
to source-sink relationships may affect fruit growth, such
as: source proximity (Corelli-Grappadelli and Coston,
1991), leaf-to-fruit ratio (Wu et al., 2005), and
competition with other growing fruit (Grossman and
DelJong, 1995¢) or with vigorously growing shoots
(Caruso et al., 1997).

Previous studies (Pavel and DeJong, 1993; Grossman
and DeJong, 1995b) calculated maximum potential fruit
growth by thinning peach trees heavily, which minimised
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resource limitations to fruit growth due to fruit-to-fruit
competition. However, Weibel (1999) reported that
within-canopy variability in fruit size was still present in
heavily-thinned peach trees, suggesting that local
resource limitations due to fruit-to-fruit competition are
not the only factors causing fruit size variability within
the tree.

Size-controlling rootstocks decrease peach tree
vigour by significantly reducing both the stem
extension growth rate (i.e., producing stems with
shorter internodes), and the number of watersprouts
(Weibel et al., 2003). These rootstock effects may
directly alter source-sink relationships within the tree
by modifying both the amount of resources available
(i.e., the size of the source located close to the growing
fruit) and the strength of the competition among
growing organs (i.e., fruit-to-fruit and fruit-to-
vegetative-organ competition). These effects
appeared to be confirmed by studies that reported
that rootstock significantly affected carbon
partitioning between the reproductive and vegetative
organs of peach trees (Caruso et al., 1997; Inglese
et al.,2002). The competition between vegetative and
reproductive organs has been reported to be stronger
in trees grafted on dwarfing rootstocks than in trees
on vigorous rootstocks, because a smaller carbon pool
is available in dwarfed trees (Lliso et al., 2004). In
addition, rootstock may modify the light distribution
within the canopy, which can have a direct effect on
light availability within the micro-environment where
each fruit is growing (i.e., have an effect on locally
available photosynthate). Similarly, scion cultivars
with different vegetative and/or reproductive habits
are expected to exhibit differences in their source-
sink relationships between reproductive and
vegetative organs. Indeed, Scorza et al. (1986)
reported dramatic differences in light distribution
within the canopies of peach cultivars with different
growth and reproductive habits. In addition, cultivars
with different vegetative and reproductive growth
habits are generally pruned differently, and pruning
may also affect carbon partitioning as suggested by
DelJong and Doyle (1984). These authors reported
that minimally-pruned dwarf trees partitioned more
dry matter to fruit compared to standard trees trained
to an “open vase”.

The aim of the present study was to improve our
understanding of the intra-canopy parameters that
decrease fruit growth rate below its maximum potential,
causing within-tree variability in fruit size at harvest.
With this objective, we hypothesised that local (i.e., very
close to the growing fruit), within-canopy factors
directly affect fruit growth. In addition, we hypothesised
that the rootstock may alter the relationship between
fruit growth and local parameters, and that rootstock
effects may be different for cultivars with different
vegetative and reproductive habits. Therefore, the
present research focussed on within-tree variability in
the fruit growth rate of heavily-thinned trees of two
cultivars with different reproductive and vegetative
habits: a fresh market freestone peach cultivar
(‘Flavorcrest’), and a processing clingstone cultivar
(‘Loadel’), grafted on five rootstocks with differing size-
controlling potential.

MATERIALS AND METHODS
Plant material and orchard management

The experiment was conducted at the Kearney
Agricultural Center of the University of California
(Parlier, CA, USA) in 2000. Measurements were taken
on two peach cultivars, ‘Flavorcrest’ (an early-maturing
yellow-fleshed cultivar) and ‘Loadel’ (an early-maturing
clingstone processing cultivar) grafted on five rootstocks
with different size-controlling potential: a vigorous
control [Nemaguard (Prunus persica X P. davidiana
hybrid)]; three intermediate vigour rootstocks [K119-50
(Prunus salicina X P. dulcis hybrid), P30-135 (Prunus
salicina X P. persica hybrid), and Hiawatha (open-
pollinated seedling of a Prunus besseyi X P. salicina
hybrid)]; and a semi-dwarfing rootstock [K146-43
(Prunus salicina X P. persica hybrid)]. Trees were planted
in 1996 and trained to a KAC-perpendicular V system
(DelJong et al., 1994) in a North-South orientation.
Planting distances for Nemaguard and P30-135
rootstocks were 4.88 m X 1.98 m (corresponding to a
planting density of 1,035 trees ha™'), while trees on K119-
50, Hiawatha and K146-43 were spaced 4.88 m X 1.83 m
apart (corresponding to a planting density of 1,120 tree
ha™). Trees were planted according to a randomised
complete block design with four replicates and five trees
per rootstock plot per replicate.

Routine horticultural care was provided to trees
according to commercial protocols for fruit production
(LaRue and Johnson, 1989). Flood irrigation was
provided to trees in the amount necessary to replace
100% of the computed evapotranspiration throughout
the growing season. A 2 m-wide herbicide-treated strip
was maintained in the tree rows, to control weed growth.
The space between rows was planted with a grass cover
crop and mowed regularly. At the beginning of the
experiment, four homogeneous trees (one in each block)
were selected for each cultivar/rootstock combination
(i.e., a total of 40 trees). Full bloom occurred on 7 March
2000. On 5 April 2000, selected trees were thinned
heavily, leaving only one fruit on each fruiting shoot.

Canopy layer and fruit sample selection

Tree canopies were divided vertically into five
hypothetical canopy layers. Each canopy layer included a
part of both main scaffolds of the perpendicular-V.
Twelve fruit within each canopy layer were selected at
random and tagged (i.e., six fruit on each scaffold; giving
a total of 60 fruit per tree).

Fruit growth and harvest

The diameters of the selected fruit were measured
with a digital caliper at the beginning of the experiment
(5 April 2000) and at harvest time. Harvest was split into
two pickings for ‘Flavorcrest’ trees (15 and 19 June 2000)
and into three pickings for ‘Loadel’ trees (29 June, 3 July,
and 10 July 2000). On each picking date, fruit were
harvested using the surface ground colour as a maturity
index according to Delwiche and Baumgardner (1985).
In addition, the untagged fruit harvested on each picking
date were also counted and weighed.

Vegetative parameters
On 5 March 2000, the trunk circumference of each
selected tree was measured 20 cm above the ground and
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the trunk cross-sectional area (TCSA) was computed
assuming each trunk was circular. Crop load was
calculated both by the number of fruit per tree, and by
normalising the number of fruit per tree by the TCSA.
Also the fruit yield per tree was normalised by the
TCSA.

After fruit harvest, half of the shoots bearing the
selected fruit were removed from the tree (i.e., six shoots
per canopy layer; 30 shoots per tree). The following
measurements were taken on these shoots: total shoot
length, the distance between the base of the shoot and
the point where the selected fruit was attached, the
distance between the point where the fruit was attached
and the terminal end of the shoot, the number of current-
season lateral shoots, the total length of current-season
shoots, the fresh weight (FW) of current-season shoots,
the total number of leaves, total leaf FW, and total leaf
dry weight (DW; leaves were weighed after being oven-
dried at 60°C to constant weight). Fruiting shoots shorter
than 10 cm were considered spurs, whereas the others
were considered hangers. In addition, 15 leaves were
sampled from each shoot, and their FW, DW and leaf
areas were measured to calculate the specific leaf weight
(SLW) for each fruiting shoot. Leaf area was measured
with a leaf area meter (Li-COR 3200; Li-COR, Lincoln,
NE, USA). SLW data were used to convert the total leaf
DW data measured on each selected shoot into total leaf
area per fruiting shoot. In addition “percent of maximum
specific leaf weight” values were calculated by dividing
each SLW datum point by the maximum SLW value
measured on each tree.

Fruit were divided into 11 fresh-weight classes, which
were defined as follows: class 1 (70-95 g), class 2
(95 -120 g), class 3 (120 — 145 g), class 4 (145-170 g),
class 5 (170-195 g), class 6 (195-220 g), class 7
(220 - 245 g), class 8 (245 -270 g), class 9 (270 - 295 g),
class 10 (295 - 320 g), and class 11 (320 — 345 g).

Statistical analyses

All statistical analyses were performed with SPSS
software (SPSS Inc., Chicago, IL, USA). Two-way
ANOVAs were used to study the significance of cultivar
(C), rootstock (R), and C X R interaction effects on the
number of fruit per tree, fruit yield per tree, TCSA, crop
load (number of fruit cm™® TCSA), and the fruit yield
cm” TCSA, (P = 0.05). Four-way ANOVAs were used to
study the significance of the effects of cultivar, rootstock,
block (B), canopy layer (L), and all interactions on SLW,
initial fruit diameter, and absolute fruit growth rate.
Finally, a five-way ANOVA was used to study the
significance of the effects of cultivar, rootstock, block,
canopy-layer, fruiting-shoot-type (F), and all interactions
on fruit FW at harvest. Tukey’s HSD (P = 0.05) was used
to perform mean separations.

Two (one for each cultivar) separate multiple
regression analyses, between absolute growth rate and
the parameters measured for each fruiting shoot, were
performed using backward elimination as a stepwise
procedure for variable selection. The backward
elimination procedure started with all of the predictors
in the model and, at each step, the variable that was
least significant (i.e., the one with the least significant
P value) was eliminated and the model was refitted. The
elimination procedure was repeated until all the

remaining variables had individual P values less than
0.10. Multiple regression analyses were applied only
on fruit grown on hangers, because we hypothesised
that short lateral fruiting shoots were characterised by
less branch autonomy, and therefore fruit growth on
them was more affected by factors external to the
fruiting shoot. Multiple regression analyses were
performed on mean values calculated for the different
parameters for each canopy layer of each tree (i.e.,
each analysis was performed on a total of 100 complete
sets of parameters). The accuracy of the multiple
regression models in predicting absolute fruit growth
rate (AGR) were evaluated by calculating the following
statistics: 7> (calculated for estimated-AGR vs.
measured-AGR with linear regression analysis); the
root mean square error of prediction (RMSEP); the
standard deviation ratio (SDR); the model bias; and the
significance of the difference of the model bias from
zero (i.e., the null hypothesis of the model bias equal to
zero was tested with paired-samples t-tests). The
RMSEP was measured, as reported by Peirs et al.
(2003), as follows:

S (AGR, - AGR))*
RMSEP = | &

n

where AGR,; and AGR; are the estimated and measured
AGR values for the i fruit, respectively.

The SDR was calculated according to McGlone and
Kawano (1998), with the following equation:

__8D
SDR = RMSEP

where SD is the standard deviation of the measured data

and RMSEP is the root mean square error of prediction.
The model bias was measure as follows:

S (AGR, - AGR)
bias = =1

n

RESULTS
Trunk cross-sectional area, crop load and yield

Both cultivar (C) and rootstock (R) significantly
affected the TCSA. ‘Flavorcrest’ trees grafted on K146-
43 had significantly smaller TCSA values than those
grafted on the other rootstocks (Table I). The TCSAs of
‘Loadel’ trees grafted on Nemaguard were significantly
greater than trees on K146-43, whereas ‘Loadel’ trees on
the other rootstocks had intermediate TCSA values
(Table I).

Crop load was significantly affected by rootstock.
Crop load did not differ significantly among ‘Flavorcrest’
trees grafted on the different rootstocks (Table I), and
ranged between 98.8 (on Hiawatha) to 157.8 fruit per
tree (on Nemaguard), or between 1.3 — 3.8 fruit tree”'
cm” TCSA. ‘Loadel’ trees on Nemaguard had larger
numbers of fruit per tree than trees on P30-135,
Hiawatha, or K146-43 (Table I). The effects of cultivar
and rootstock were non-significant when crop loads were
normalised by TCSA (Table I).
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TABLE I
Trunk cross-sectional area (TCSA), number of fruit per tree, number of fruit per tree cm™ TCSA, total fruit yield per tree, and total fruit yield per tree
em™ TCSA in ‘Flavorcrest’ and ‘Loadel’ peach trees grafted on Nemaguard, P30-135, K119-50, Hiawatha, or K146-43 rootstocks

No of fruit Total yield Total yield/
Cultivar Rootstock TCSA (cm?) No of fruit/tree cm” TCSA (kg/tree) TCSA (kg cm™)
‘Flavorcrest’ Nemaguard 114.8a% 157.8a 1.4a 29.6a 0.26a
P30-135 88.8a 149.3a 1.9a 29.1a 0.38a
K119-50 81.5a 148.5a 2.0a 31.0a 0.41a
Hiawatha 81.0a 98.8a 1.3a 21.2a 0.29a
K146-43 33.1b 116.0a 3.8a 19.1a 0.63a
‘Loadel’ Nemaguard 75.5a 215.0a 2.9a 38.3a 0.51a
P30-135 57.6ab 107.5b 2.0a 19.8b 0.37a
K119-50 55.4ab 135.8ab 2.6a 24.4b 0.47a
Hiawatha 58.5ab 91.3b 1.6a 15.8b 0.28a
K146-43 35.7b 106.3b 3.0a 17.0b 0.48a

“For each cultivar, mean separation within columns by Tukey’s HSD (P = 0.05). Values followed by a different lower-case letter are significantly

different.

Rootstock significantly affected the total yield per tree
(expressed as kg fruit per tree, or as kg fruit per tree cm™
TCSA). Total fruit yields from ‘Flavorcrest’ trees on
Nemaguard were significantly greater than on the other
rootstocks. The effects of cultivar and rootstock were
non-significant when the total fruit yield per tree was
normalised by TCSA (Table I).

Within-canopy variability of fruit size at harvest

Cultivar, rootstock, and canopy layer (L) significantly
affected fruit size at harvest (Table II; Figures 1-4),
whereas fruit size was not significantly affected by the
type of fruiting shoot (F; hangers or spurs). The C X R,
C X Fand R X L X F interactions also significantly
affected fruit FW at harvest. Similarly, C, R, L and C X
R significantly affected AGR (Figure 3; Figure 4).

Independent of cultivar, trees on K146-43 had the
smallest mean fruit size. ‘Flavorcrest’ trees on K119-50
and Hiawatha had larger fruit than those on the other
rootstocks (Table II), whereas the mean fruit size from
‘Loadel’ trees was largest for those on P30-135 (Table II).

Individual fruit size varied greatly within trees, in all
cultivar-rootstock combinations (Table II). Size
variability in ‘Flavorcrest’ fruit was greatest in trees
grafted on P30-135 (226 g total range), intermediate in
trees on Nemaguard, K119-50, and Hiawatha (203, 204,
and 191 g total range, respectively), and least in trees
grafted on K146-43 (164 g total range; Table II). In
‘Loadel’ trees, fruit size variability was greatest in trees
on Nemaguard and K119-50 (211 and 218 g total range,
respectively), intermediate in trees on P30-135 and
Hiawatha (187 and 186 g total range, respectively), and
least in trees grafted on K146-43 (169 g total range;
Table II).

The size of fruit grown on hangers exhibited
significant  variability in all cultivar-rootstock
combinations (Figure 1; Figure 2). Independent of
cultivar, trees on Nemaguard produced a large variability
in fruit size; between fruit size classes 1 and 9 for
‘Flavorcrest’ trees grafted on Nemaguard, and between
size classes 1 and 8 for ‘Loadel’ trees on Nemaguard.
Fruit size in ‘Flavorcrest’ trees on K146-43 ranged
between size classes 2 and 8. In general, ‘Loadel’ trees
had a lower overall variability in fruit sizes (i.e., only
between class 1 and class 8) compared to ‘Flavorcrest’
trees. ‘Loadel’ trees on K146-43, and on P30-135, had
ranges of fruit sizes between class 1 and 7, and between
class 2 and 8, respectively.

Fruit FW at harvest differed significantly between the
different canopy layers of trees in all cultivar-rootstock
combinations (Figure 3; Figure 4). In general, fruit FW at
harvest, and accordingly also absolute fruit growth rate,
was highest in the top layers and decreased progressively
towards the bottom layers of the canopy (Figure 3;
Figure 4). The steepness of these gradients was affected
by the cultivar-rootstock combination (Figure 3; Figure
4). These within-canopy gradients were evident in all
‘Flavorcrest’ trees, independent of rootstock, even
though the width of the gradient changed with rootstock
(Figure 3). Gradients in fruit FW and in absolute fruit
growth rate within ‘Loadel’ trees were more evident in
trees grafted on Nemaguard and P30-135, than in trees
on K119-50, Hiawatha or K146-43 (Figure 4).

Initial fruit size was significantly affected by C, R and
L, whereas the effects of the block, and of all the other
interactions between factors, were non-significant.
Independent of cultivar-rootstock combination, initial
fruit size also differed significantly among canopy layers
(Figure 3; Figure 4), with the largest fruit located in the
bottom layers. Initial fruit size decreased progressively
from the bottom to the top layers of the canopy.

Multiple regression analysis extracted a significant
model for each cultivar (with an 7* of 0.305 and 0.386 for
‘Flavorcrest” and ‘Loadel’, respectively; Table III).
According to the model extracted for ‘Flavorcrest’, AGR
was positively correlated with SLW, and with the total
leaf area of the hanger, and negatively correlated with
initial fruit diameter and the FW of current season
shoots. In this model, the standardised coefficients were
highest for the “current-season shoot FW” and “specific
leaf weight” variables. In the model extracted for
‘Loadel’, AGR was positively correlated with SLW and

TABLE II
Mean fresh fruit weight and range of variation in fresh fruit weight in
‘Flavorcrest’ and ‘Loadel’ peach trees grafted on Nemaguard, P30-135,
K119-50, Hiawatha, or K146-43 rootstocks

‘Flavorcrest’ ‘Loadel’
Range Range
Fresh weight  (min-max) Fresh weight  (min-max)

Rootstock (g/fruit) (g/fruit) (g/fruit) (g/fruit)
Nemaguard 185¢” 76-274 174b 71-282
P30-135 207b 95-321 185a 96-283
K119-50 218a 112-316 174b 78-296
Hiawatha 220a 129-320 174b 86-272
K146-43 166d 99-263 155¢ 70-239

“Mean separation within columns by Tukey’s HSD (P = 0.05). Values
followed by a different lower-case letter are significantly different.
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TaBLE IIT
Unstandardised (B) and standardised (B) coefficients and significance of the coefficients for each predictor of the multiple regression models extracted
for ‘Flavorcrest’ and ‘Loadel’ peach trees

Coefficient
‘Flavorcrest™” ‘Loadel’”

Predictor B B Sig. B B Sig.
Constant +0.617 - 0.001 +0.514 - 0.001
Initial fruit diameter -0.007 -0.149 0.091 -0.005 -0.182 0.041
Current-season shoot FW -0.002 -0.616 0.035

Specific leaf weight +0.033 +0.454 0.001 +0.024 +0.411 0.001
Total leaf area +0.002 +0.001 0.007

Fruiting shoot FW - - - +4.96E—4 +0.226 0.012

YThe model calculated for ‘Flavorcrest” was highly significant (P < 0.0001) and had * = 0.305.
“The model calculated for ‘Loadel” was highly significant (P < 0.0001) and had #* = 0.386.

with the FW of the fruiting shoot, and negatively
correlated with initial fruit diameter. The standardised
coefficient of the “specific leaf weight” variable was the
highest in the ‘Loadel’ model. Both models fitted the
data well, as suggested by the low RMSEP values (0.0486
and 0.0349 mm d7' for ‘Flavorcrest’ and ‘Loadel’,
respectively), the low (and non-significantly different
from zero) model bias (-0.0002 and 0.0001 mm d' for
‘Flavorcrest’ and ‘Loadel’, respectively), and the high
SDR values (1.20 and 1.28 for ‘Flavorcrest’ and ‘Loadel’,
respectively; Table IV).

Each model had a different fit, depending on the
rootstock (Figure 5; Figure 6; Table IV). The ‘Flavorcrest’
model best fitted the data from trees on K119-50 (+* =
0.614; P < 0.0001), and also fitted data from trees on
Nemaguard (> = 0.483; P = 0.0021) and on Hiawatha (+*
= 0.437; P = 0.0015) (Figure 5). Indeed, although in
‘Flavorcrest’ trees on K119-50, the model tended to
slightly, but significantly, underestimate AGR (as
suggested by the negative and significant value of the
model bias), the slope of the linear regression equation
was highest and the intercept lowest (Figure 5), the
RMSEP was fairly low, and the SDR relatively high
(Table TV). The worst fit of the ‘Flavorcrest’ model
occurred for trees grafted on K146-43 (Table IV; Figure
5,7 =0.296;P = 0.02).This model tended to overestimate
AGR, as suggested by the significant positive model bias
of 0.0606 mm d™', across the whole data range (Figure 5).
In addition, the slope of the estimated AGR vs.
measured AGR linear regression equation was low
(0.308) and the intercept was high (0.546). The r* was low

(0.296), the RMSEP was relatively large (0.0702 mm d ™),
and the SDR was fairly low (0.61; Table IV). The ability
of the ‘Flavorcrest’ model to predict AGR values of trees
on Nemaguard, P30-135, or Hiawatha was intermediate
(Table IV; Figure 5).

The ‘Loadel’ model best fitted the data from trees
grafted on P30-135 (©* = 0.597; P < 0.0001) and on
Nemaguard (* = 0.560; P = 0.0001; Figure 6). The
‘Loadel’ model also fitted the fruit growth of trees
grafted on K146-43 (+* = 0.469; P = 0.0009), whereas the
fitting of data from trees on K119-50 was poorer (©* =
0.213; P = 0.04) than trees on Nemaguard, P30-135, or
K146-43 (Figure 6). The ‘Loadel’ model did not
significantly fit the fruit growth data in trees grafted on
Hiawatha (Figure 6). The ‘Loadel’ model predicted fruit
AGR in trees grafted on P30-135 fairly accurately. For
these data, the slope and the intercept of the estimated
AGR vs. measured AGR linear regression equation were
relatively high and low, respectively (besides the
relatively high %), the RMSEP was fairly low, the SDR
relatively high, and the bias non-significantly different
from zero (Table 1V; Figure 6). The fit of the ‘Loadel’
model for fruit AGR was lowest in trees grafted on
Hiawatha and K146-43, and intermediate in trees on
Nemaguard and K119-50 (Table 1V, Figure 6).

DISCUSSION
Tree vigour

As reported previously (DeJong et al.,2004) rootstock
significantly affected tree vigour in both scion cultivars,

TABLE IV
Root mean square error of prediction (RMSEP), 1°, standard deviation ratio (SDR), model bias, and probability of the difference of model bias from
zero calculated for the two multiple regression models on ‘Flavorcrest’ and ‘Loadel’ trees™

Model bias
RMSEP Bias value
Cultivar Rootstock r (mmd™) SDR (mm d™) Probability
‘Flavorcrest’ Nemaguard 0.483 0.0310 1.37 +0.0081 0.252
P30-135 0.335 0.0424 1.22 -0.0097 0.320
K119-50 0.614 0.0319 1.38 -0.0174 0.010
Hiawatha 0.437 0.0556 0.87 -0.0429 0.001
K146-43 0.296 0.0702 0.61 +0.0606 0.001
Total ‘Flavorcrest’ 0.305 0.0486 1.20 -0.0002 0.962
‘Loadel’ Nemaguard 0.559 0.0356 1.39 —-0.0092 0.260
P30-135 0.597 0.0268 1.60 -0.0021 0.736
K119-50 0.213 0.0343 1.15 -0.0008 0.925
Hiawatha 0.044 0.0405 0.96 -0.0115 0.213
K146-43 0.469 0.0358 1.06 +0.0235 0.001
Total ‘Loadel’ 0.386 0.0349 1.28 +0.0001 0.999

“For more details, see Table III.

"All statistics were calculated for the relationships between estimated and measured absolute fruit growth rate (for more details see Table I11I, Figure 5
and Figure 6) both by pooling all the data from each cultivar independent of rootstock (Total ‘Flavorcrest’ and Total ‘Loadel’), and by keeping the

data from the twelve cultivar-rootstock combinations separate.
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K146-43 rootstock. The estimated absolute growth rates were

calculated with the multiple regression model extracted for
‘Flavorcrest’ trees (for more details see Table III).
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as demonstrated by the significant differences in TCSA
among trees grafted on the different rootstocks (Table I).
K146-43 substantially controlled peach tree size, while
Hiawatha, K119-50, and P30-135 appeared to be
rootstocks with intermediate size-controlling capacity.

Crop load and fruit yield

The number of fruit per tree was not different in
‘Flavorcrest’ trees on the different rootstocks, whereas
‘Loadel’ trees on Nemaguard had significantly more
fruit than trees on P30-135, Hiawatha, or K146-43.
However, no significant effect of rootstock was detected
when crop load was normalised by TCSA (Table I).
Therefore, crop load was fairly homogenous among the
trees of each cultivar grafted on the different rootstocks.
The crop load of all trees can be considered to be below
the threshold of four fruit cm™ TCSA reported by
Inglese et al. (2002) for crop load affecting fruit FW at
harvest. In addition, the trees used in this experiment
had substantially lower crop loads than commercially-
thinned trees located in the same experimental plot.
Commercially-thinned ‘Flavorcrest’ trees grafted on
Nemaguard, P30-135, K119-50, Hiawatha, or K146-43
had 421 + 14,422 + 19,435 + 28,302 + 23, and 271 + 17
fruit tree™', respectively. Commercially-thinned ‘Loadel’
trees grafted on Nemaguard, P30-135, K119-50,
Hiawatha, or K146-43 had 398 + 14, 318 + 11,292 + 16,
271 + 11, and 278 + 27 fruit tree ', respectively (DeJong
et al.,2001).

Furthermore, the heavy thinning applied to the trees
used in this experiment had a dramatic effect on fruit size
compared to commercially-thinned trees. Commercially-
thinned ‘Flavorcrest’ trees grafted on Nemaguard, P30-
135, K119-50, Hiawatha, or K146-43 had average fruit
sizes of 129 £ 5,120 £ 4,121 + 4,123 + 6,and 101 £ 3 g
fruit™, respectively. Commercially-thinned ‘Loadel’ trees
grafted on Nemaguard, P30-135, K119-50, Hiawatha, or
K146-43 had average fruit sizes of 133 + 3,135 + 3,132 +
6, 125 + 3, and 116 + 4 g fruit™”, respectively (DeJong
et al.,2001). However, a low crop load was not sufficient
to guarantee maximum fruit growth, because fruit
distribution within the canopy also apparently affected
fruit growth. Indeed, Marsal et al. (2003) reported that
fruit DW was lower when fruit were distributed in
clumps on hangers, compared to when fruit were
distributed evenly within the canopy. Inglese et al. (2002)
thinned trees according to a fertility index (number of
fruit/shoot length), whereas in the present experiment
only one fruit was left on each fruiting shoot, to avoid
fruit-to-fruit competition and to minimise transport-
limitation effects due to distance from source (DeJong
and Grossman, 1995). Therefore, in the present study, it
was assumed that fruit growth was not limited by fruit-
to-fruit competition, because of the combined effects of
low crop load, and the even fruit distribution within the
canopy.

Total yield per tree was similar in ‘Flavorcrest’ trees
on the different rootstocks, whereas ‘Loadel’ trees on
Nemaguard exhibited higher yields per tree than on the
other rootstocks. However, as for crop load, differences
between rootstocks for either cultivar were not
significant when yield was normalised by TCSA. With
both cultivars, trees on Nemaguard appeared to have
later fruit maturity. Almost half of the total

‘Flavorcrest’ yield was harvested at the second picking,
and two-thirds of the ‘Loadel’ yield was harvested at
the second and third pickings. Previous studies also
reported significant effects of peach rootstock on the
earliness of fruit ripening (Forlani and Di Vaio, 1992).
In the present study, earliness of fruit ripening
appeared to be negatively correlated with rootstock
vigour in ‘Flavorcrest’ trees, but this was not the case
for ‘Loadel’ trees.

Rootstock affected fruit size at harvest

Rootstock significantly affected mean fruit size at
harvest, in heavily-thinned trees. Therefore, it appears
that rootstock limited the maximum potential fruit
growth in this experiment. Trees of both cultivars on
K146-43 had the lowest mean fruit size. This may have
been related to the stronger competition between
vegetative and reproductive growth in trees on size-
controlling rootstocks compared to trees on more
vigorous rootstocks, because of the limited carbon pool
available in dwarfed trees (Lliso et al., 2004).
Furthermore, peach trees grafted on size-controlling
rootstocks have been demonstrated to experience mild
water stress early in the growing season (Basile et al.,
2003a), because of the relatively low hydraulic
conductance of their root systems (Basile et al., 2003b;
Solari et al.,2006). Peach fruit are especially sensitive to
water stress during growth stages I and III, whereas they
are considered less sensitive during pit hardening (stage
II; Chalmers et al., 1981; 1983). Girona et al. (2004)
reported that mild water stress during stage I caused a
decrease in fruit growth, because of an apparent
limitation in carbon source. These authors hypothesised
that the effect of water stress during stage I on early
shoot growth may account for this source limitation.
Weibel (1999) showed that most of the difference in
shoot growth between trees grafted on the size-
controlling K146-43, and trees on Nemaguard, occurred
very early in the growing season. These early
differences in shoot growth were later correlated with
differences in tree water status (Basile et al., 2003a).
Therefore, it appears plausible that the negative effect
on fruit size of the size-controlling rootstock K146-43 is
correlated with carbon source limitation, due to mild
water stress early in the growing season, or perhaps to
a direct effect of a slightly lower water status on the
rate of fruit expansion. In the present study, trees were
heavily-thinned. Girona et al. (2004) reported that the
negative effect of water stress on fruit growth during
stage I was more evident in low-to-moderately thinned
trees, because the higher crop loads amplified the
effects of carbon source limitation.

Variability in fruit growth rate

Although fruit were grown with little fruit-to-fruit
competition, there was a large variability in individual
fruit size at harvest (Table II; Figure 1; Figure 2). This
observation confirmed results reported previously by
Weibel (1999). Rootstock appeared to affect the range of
variability in fruit size, which appeared to be larger in
both ‘Flavorcrest’ and ‘Loadel’ trees on vigorous
(Nemaguard) or semi-vigorous (P30-135 and K119-50)
rootstocks, than in trees on the more size-controlling
rootstock (K146-43). This difference may have been
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related to the negative effect that the size-controlling
K146-43 rootstock had on the maximum rates of fruit
growth.

In the present study, trees were heavily-thinned and
the fruit were evenly distributed, therefore factors other
than fruit-to-fruit competition caused the fruit to grow
below their maximum potential growth rate. We
hypothesised that factors related to the canopy
compartment in which each fruit was growing affected
fruit growth. The parameters we considered attempted to
take into account local carbon source availability (i.e.,
light distribution, total leaf area), competition between
vegetative and reproductive organs (i.e., number of
current-year shoots, total length of current-year shoots),
vigour of the fruiting shoot (i.e., basal diameter and FW
of the fruiting shoot), and the position of the fruit on the
fruiting shoot. Since it is unlikely that short, lateral
fruiting shoots were autonomous for carbon (Lauri and
Lespinasse, 1993), factors external to the fruiting spur
were expected to affect fruit growth. For this reason
short, lateral fruiting shoots were not considered in the
multivariate analyses. Fruit growing on hangers
exhibited high intra-canopy variability in all cultivar-
rootstock combinations (Figure 1; Figure 2).

Fruit position in the canopy was an important factor
affecting fruit growth. In all cultivar-rootstock
combinations, decreasing gradients in fruit size and in
absolute fruit growth rate at harvest, were detected from
the top to the bottom of the trees (Figure 3; Figure 4).
Previous studies have reported similar gradients in fruit
size in commercially-thinned peach trees (Forlani et al.,
2002; Farina et al.,2005). In the present research, in some
cases, fruit size was large in the top layers, then decreased
dramatically in the lower layers. Similar patterns were
previously reported in ‘Elegant Lady’ peach trees
trained to a perpendicular-Y (Farina ef al., 2005) and, in
the same experiment, the authors reported that fruit size
decreased linearly from top to bottom in trees trained to
a “delayed vase”.

Light distribution within the canopy has been
demonstrated to be an important factor determining
variability in fruit growth and fruit quality (Bible and
Singha, 1993; Marini et al., 1993; Myers, 1993; Luchsinger
et al., 2002; Lewallen and Marini, 2003). In the present
study, light intensity was not measured around the fruit
during the season, but SLW was measured after fruit
harvest for each fruiting shoot selected. SLW has been
positively  correlated with the amount of
photosynthetically active radiation intercepted by the
leaf in several fruit species (Weinbaum et al., 1989;
Marini and Sowers, 1990; Li and Lakso, 2004). In
addition, SLW is highly correlated with Ileaf
photosynthetic capacity (Marini and Marini, 1983), leaf
nitrogen per unit leaf area (Weinbaum et al., 1989; Rosati
et al., 2000), and daily carbon assimilation (Rosati et al.
1999). In the present study, gradients of decreasing SLW
(from the top to the bottom of the tree) were detected in
both cultivars, and differences in SLW could explain part
of the within-canopy variability in fruit growth rates.
Absolute fruit growth rate was positively correlated with
SLW (Table III). In addition, the growth of ‘Flavorcrest’
fruit was also positively correlated with total leaf area on
the fruiting shoot (Table III). This result confirmed the
importance of an adequate local leaf-to-fruit ratio for

fruit growth, as reported previously (Wu et al., 2005).
Therefore, part of the variability in fruit growth
appeared to be related to C-source limitation due to the
low light intensity reaching leaves very close to the fruit,
to the low photosynthetic capacity of these leaves, and/or
to an insufficient area of leaves.

Absolute fruit growth rate in ‘Flavorcrest’ was
negatively correlated with the FW of current season
shoots grown on the fruiting shoot (Table III). Therefore,
it appeared that competition between vegetative and
reproductive growth may occur at the fruiting shoot
level. The model calculated for ‘Loadel’ trees did not
indicate any significant correlation between AGR and
the FW of the current season shoots, indicating that, in
‘Loadel’, competition between shoot and fruit growth
was not relevant. ‘Flavorcrest’ trees are generally Winter-
and Summer-pruned more severely than ‘Loadel’ trees
(DelJong et al., 2004), because of differences in the
production habit between these cultivars. Summer- and
Winter-pruning affects shoot growth in peach trees in the
next growing season (Marini, 1985); therefore fruit
growing on ‘Flavorcrest’ trees may have experienced a
stronger competition with vegetative growth than fruit
on ‘Loadel’ trees. On the other hand, fruit growth rate
was positively correlated with shoot FW in ‘Loadel’
trees, indicating that, in these trees, fruit growth was
enhanced on vigorous fruiting shoots.

Sink-strength is a positive function of sink-size (Farrar,
1993), and this relationship is in agreement with the fact
that early peach fruit size has been reported to influence
subsequent fruit growth (Davis and Davis, 1948; Wu
et al., 2005). Early fruit size is affected not only by
environmental factors (e.g., temperature) and source-
sink relationships for carbon and other resources
occurring early in the growing season, but also by factors
carried over from the previous year (i.e., factors affecting
flower induction, the availability of storage carbohydrates
and nutrients, etc.). In the present study, most parameters
were measured immediately after fruit harvest, and
therefore they could not account for the variability in
fruit size observed early in the growing season. For these
reasons, initial fruit size was inserted in both cultivar-
specific multiple regression models, in order to take into
account the variability induced by factors acting before
the beginning of the experiment. Surprisingly, in both
cultivars, AGR was negatively correlated with initial fruit
size. This was apparently due to an opposite, within-tree
gradient that initial fruit size exhibited, compared to final
fruit size and AGR. Indeed, initial fruit size on the day of
measurement increased significantly from the top to the
bottom of the canopy in all cultivar-rootstock
combinations (Figure 3; Figure 4). This result was
unexpected. Possible explanations for these gradients in
early fruit size may have been the heterogeneity of
bloom time within the canopy, with bottom flowers
opening before top flowers, as reported by Dann and
Jerie (1988). Another hypothesis may be that flower
induction progressed from the bottom to the top of the
canopy during the previous season because of
differences in vigour induced by the light distribution
gradient. Alternatively, a progressively decreasing
gradient in fruit-set from the top to the bottom of
the canopy may cause stronger early fruit-to-fruit
competition in the top compared to the bottom of the
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canopy. George et al. (1996) reported that fruit set
decreased from the top to the bottom of the canopy in
persimmon trees. However, the data collected in the
present experiment were not sufficient to test any of
these hypotheses, and therefore more studies are
needed to understand what affected early fruit size in
peach trees. Regardless, initial fruit size explained only
a small part of the total intra-canopy variability in fruit
size, as suggested by the relatively small standardised
coefficients calculated for this predictor in both models
(Table III). This situation may be due to the large
difference in fruit size between early season and
harvest time.

The two multiple regression models fitted the fruit
growth variability data for trees of both cultivars on
Nemaguard fairly well (Table 1V; Figure 5; Figure 6).
However, rootstock appeared to affect the relationship
between AGR and the measured parameters. Part of the
lack of fit of the models regarding fruit growth variability
in some cultivar-rootstock combinations may have been
caused by the decrease in intra-canopy variability in fruit
growth and light distribution induced by the rootstock.
This appeared to be the case for ‘Flavorcrest’ trees
grafted on K146-43 (Figure 1; Figure 3; Figure 5). In other
cases, the cultivar-rootstock combination appeared to
affect directly the relationship between the measured
parameters. This seemed to be the case for ‘Loadel’ trees
on K119-50, where light distribution within the canopy
did not appear to exhibit a large gradient, but light
seemed to be distributed less evenly through the canopy,
as indicated by the low values of the percentage of
maximum SIW measured in all the canopy layers
(Figure 4). However, in most cases, trees on vigorous
rootstocks had clearer intra-canopy variability in all the
parameters measured, compared to trees on less vigorous

rootstocks. The models were able to account for only
about 60% of the total variability in fruit growth in the
best cases (i.e., in ‘Flavorcrest’ on K119-50; and in
‘Loadel” on P30-135). Therefore, other factors not
considered in the present study (e.g., within-canopy local
nutrient availability, temperature gradients within the
canopy, etc.) may also have played also a role in reducing
the fruit growth rate below the maximum potential
growth rate.

The present study confirmed that a large variability in
individual fruit growth occurred within peach trees, even
when fruit-to-fruit competition was minimised. Fruit
size at harvest decreased progressively from the top to
the bottom of the canopy. Local intra-canopy factors
were positively (e.g., light distribution within the
canopy, leaf area on the fruiting shoot, and fruiting shoot
vigour) or negatively (e.g., vigour of current-season
shoot growth on the fruiting shoot) correlated with the
growth of individual fruit. The rootstock modified the
relationship between fruit growth and local intra-canopy
factors. In addition, the significant effect of rootstock on
fruit growth in heavily-thinned trees indicated that
rootstock may limit the maximum potential growth rate
of fruit. This relationship was particularly evident for the
size-controlling rootstock K146-43. The difference
between cultivars, in parameters that explained intra-
canopy fruit growth variability, suggested that, in
different cultivars, the same factors may be of different
relative importance. The measured parameters did not
explain all the intra-canopy variability in fruit growth,
suggesting that other factors also played a role.
Interestingly a decreasing gradient in early fruit size
was detected from the top to the bottom of the canopy,
but the data collected in the present experiment were
not designed to explain this gradient.
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