
Summary Distribution of leaf nitrogen with respect to leaf
mass per unit area (Ma), nitrogen per unit mass (Nm) and nitro-
gen per unit area (Na) within peach (Prunus persica L.) tree
canopies was studied in two field experiments. In one experi-
ment, leaf light exposure and Ma were measured on leaves from
different canopy positions of peach trees subjected to five ni-
trogen (N) fertilization treatments. Leaf light exposure and Ma

were linearly related and the relationship was independent of N
fertilization. In a subsequent experiment, N fertilizer was ap-
plied to previously unfertilized trees in midsummer, after shoot
growth had terminated. Application of N fertilizer did not af-
fect mean canopy Ma. Fertilization increased Nm of all leaves
throughout the canopy compared with non-fertilized trees. No
significant relationship between Nm and Ma was found in either
fertilized or control trees. There was a linear relationship be-
tween Na and Ma and the slope of the relationship was increased
by N fertilizer application. We conclude that distribution of Na

in peach tree canopies is primarily a function of Ma partitioning
with light and Nm, which is related to soil N availability.

Keywords: modeling, nitrogen allocation, nitrogen fertiliza-
tion, photosynthesis, Prunus persica.

Introduction

Nitrogen (N) partitioning within plant canopies is considered
optimal when leaf N is distributed along the canopy light gra-
dient to maximize carbon assimilation per unit N (Field 1983,
Hirose and Werger 1987). This hypothesis is supported by
several studies showing that leaf N concentration per unit area
or per unit mass is proportional to the irradiance available at
the leaf sites (Gulmon and Chu 1981, Field 1983, DeJong and
Doyle 1985, Hirose and Werger 1987, Walters and Field 1987,
Evans 1989b, Lemaire et al. 1991, Leuning et al. 1991,
Ellsworth and Reich 1993, Kull and Niinemets 1993,
Hikosaka et al. 1994, Reich and Walters 1994, Niinemets
1995, 1997, Hollinger 1996).

However, in many species, a strong correlation exists be-
tween leaf N concentration and light exposure within the can-
opy only when N is expressed per unit leaf area (Na). When N

is expressed per unit mass (Nm), some species exhibit increas-
ing (Kull and Niinemets 1993), constant (DeJong et al. 1989,
Weinbaum et al. 1989, Klein et al. 1991, Ackerly 1992,
Ellsworth and Reich 1993, Harley and Baldocchi 1995,
Hollinger 1996, Niinemets 1997), or decreasing (Ellsworth
and Reich 1992, Kull and Niinemets 1993, Reich and Walters
1994, Niinemets 1995, 1997) Nm with increasing light.

The different relationships between Na and Nm with light
can be explained by considering that Na is the product of leaf
mass per unit area (Ma) and Nm (Na = MaNm). Parameter Ma is
positively related to leaf irradiance (Jackson 1967,
Lewandowska and Jarvis 1977, Chabot et al. 1979, Gulmon
and Chu 1981, Marini and Barden 1982, Jurik 1986,
Weinbaum et al. 1989, Sanchez and Righetti 1990, Klein et al.
1991, Campbell et al. 1992, Kull and Niinemets 1993, Wayne
and Bazzaz 1993, Reich and Walters 1994, Niinemets 1997).
Increased Ma is the result of increased leaf thickness, palisade
depth and mesophyll cell density (Chabot et al. 1979, Jurik
1986, Wooge and Barden 1987, Witkowski and Lamont 1991,
Thompson et al. 1992). The correlation between Ma and light
is usually strong and results in a positive relationship between
Na and irradiance even when Nm is constant or decreases with
increasing light.

The close correlation between Ma (and Na) and light expo-
sure has led to the conclusion that Ma is a species-specific esti-
mate of long-term leaf light conditions (Niinemets 1997).
Furthermore, it has been suggested that Ma distribution in can-
opies provides a means of distributing Na within plant cano-
pies (Ellsworth and Reich 1993). The distribution of Ma in tree
canopies explains 95% of the distribution of Na in Acer
saccharum Marsh., and modeled integrated canopy photosyn-
thesis is higher when based on observed Ma distribution com-
pared with other potential Ma distribution patterns (Ellsworth
and Reich 1993). Similar results have been predicted by the
model of Gutschick and Wiegel (1998).

Although Ma may explain most of the Na partitioning within
a given canopy, the relationship between Ma and Na is depend-
ent on tree nitrogen nutrition status, and the slope of the Na–Ma

relationship increases with increasing N fertilization (DeJong
et al. 1989, Walters and Reich 1989, Rosati et al. 1999). Nitro-
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gen fertilization generally increases Nm (Gulmon and Chu
1981, Beutel et al. 1983, DeJong et al. 1989, Thompson et al.
1992, Saenz et al. 1997) and consequently Na for any given Ma.
Therefore, Ma may be sufficient for scaling relationships (i.e.,
estimating Na and photosynthesis) across different soil nutri-
ent regimes; however, the mechanisms underlying the interac-
tion between N fertilization and the partitioning of N with light
gradients are not yet well understood.

Furthermore, the relationship between Ma and irradiance
has not been extensively studied across different soil N avail-
abilities and there is no clear evidence that the Ma–light rela-
tionship is independent of N fertilization. Many authors
(Oxman et al. 1977, Longstreth and Nobel 1980, Gulmon and
Chu 1981, Jurik et al. 1982) have found that, with increasing N
fertilization, Ma is reduced for a given irradiance above the
plants. However, because light was not measured at the single
leaf level, the reduction in Ma may have been caused by in-
creased shading at the leaf level as a result of increased canopy
size of the N-fertilized plants.

We have investigated whether Ma is partitioned along can-
opy light gradients independently of plant N nutrition and
whether N fertilization affects Nm independently of light avail-
ability at the leaf site. To test these hypotheses, the relation-
ship between (Ma) and leaf irradiance was studied across
different N fertilization regimes. The effects of N fertilization
on the partitioning of N within the tree canopy were studied by
observing changes in the Nm–Ma and the Na–Ma relationships
following N fertilization of N-deficient peach trees.

Materials and methods

The first part of this study is a further elaboration of data from
DeJong et al. (1989). Plants were 11-year-old nectarine trees
(Prunus persica cv. Fantasia) fertilized with 0, 112, 196, 280
or 364 kg ha–1 year–1 of nitrogen fertilizer. The latter four
treatments received 112 kg ha–1 during late summer of the pre-
vious year. Trees in the 196, 280 and 364 kg ha–1 year–1 treat-
ments received the additional fertilizer during shoot growth in
early spring.

Canopy light (PAR) at single leaf sites was measured after
maximum shoot elongation during two clear days on trees in
each of the five nitrogen treatments. Light data were expressed
as the number of hours at photon flux densities (PFD) greater
than 100 µmol m–2 s–1. After collection of the light data, the
leaves were harvested and immediately taken to a laboratory
for leaf area measurement and then dried for dry mass mea-
surement and nitrogen analysis. Leaf mass per unit area (Ma)
and nitrogen concentration per unit mass (Nm) and per unit
area (Na) were subsequently calculated. Details on experimen-
tal design, plant material, laboratory analysis and light mea-
surements are provided in DeJong et al. (1989).

In a subsequent experiment, we used 14-year-old peach
trees (Prunus persica cv. Flamecrest), growing at the Kearney
Agricultural Center, University of California, Parlier, Califor-
nia. Trees were trained to a standard open-vase configuration
and, with the exception of N fertilization, received routine hor-
ticultural care suitable for commercial fruit production includ-

ing pruning, fruit thinning and harvesting, irrigation, and pest
control. During the 5 years before the experiment, the trees re-
ceived no N fertilizer and exhibited moderate N deficiency.
Ten homogeneous, randomly chosen trees were selected and
10 shoots ranging from the lower inside to upper outside of the
canopy of each tree were tagged. On July 12 (Day of year
(DOY) 193), five of the 10 trees were fertilized with ammo-
nium sulfate fertilizer corresponding to 366 kg N ha –1 and irri-
gated within a few hours after fertilizer application. Fully
expanded mid-shoot leaves (one from each tagged shoot) were
collected at intervals for the remainder of the season on DOY
193, 200, 206, 220, 234, 255 and 283 (July 12 and 25, August
8 and 22, September 12 and October 10, respectively). Sample
leaves were harvested between 0800 and 1000 h, immediately
taken to a laboratory for measurement of leaf area and then
dried for 72 h at 70 ºC. Nitrogen content was determined as de-
scribed by DeJong et al. (1989). Values of Ma and Na were sub-
sequently calculated.

Data were analyzed by comparing the slopes and intercepts
of linear regression models (Kleinbaum and Kupper 1978).

Results

Analysis of Ma data from the initial experiment (DeJong et al.
1989) indicated that the Ma–light exposure relationship was
unaffected by N fertilization (Figure 1, data shown for lowest
and highest fertilization treatments only). Plotting Ma against
leaf light exposure (expressed as daily time of exposure to
PFD > 100 µmol m–2 s–1) resulted in a linear relationship that
did not vary significantly with N fertilization. There were no
significant trends in regression slope or intercept with increas-
ing fertilization, and the lowest and highest fertilization treat-
ments had the most similar regression parameters. The linear
regressions were fit using all available data, including those
for leaves with less than 0.5 h of exposure to PFD >
100 µmol m–2 s–1, which were excluded in the original analy-
sis by DeJong et al. (1989).

In the subsequent experiment, there was no significant rela-
tionship between Nm and Ma in either fertilized or control trees
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Figure 1. Relationship between leaf mass per unit area (Ma) and leaf
light exposure (expressed as daily time of exposure to PFD > 100
µmol m–2 s–1) for peach trees fertilized with 0 (closed circles; solid
line (y = 4.95x +58.3; r2 = 0.77, P < 0.001)) and 364 (open circles;
dashed line (y = 4.96x +57.3; r2 = 0.667, P < 0.001)) kg ha–1 year–1 of
N fertilizer.



at any sampling date (Figure 2, data shown only for three
dates). Leaf N concentration was relatively constant through-
out the wide range of Ma found within the canopies. However,
Nm was higher in fertilized trees than in control trees within
2 weeks after fertilizer application and the differences in Nm

between the two treatments continued to increase for the rest
of the season (Figures 2 and 3B).

When leaf N concentration was expressed on an area basis,
Na was linearly correlated with Ma (P < 0.001 and r2 between
0.70 and 0.91 for all regressions) in both fertilized and control
trees (Figure 2). However, starting from DOY 220 and for all
subsequent dates, fertilized trees had significantly (P < 0.05)
higher slopes of the Na–Ma relationship than control trees,
whereas there was no significant difference in the intercepts.
None of the intercepts of these regressions for both fertilized
and control trees was significantly different from zero. The
comparatively higher slopes of the Na–Ma relationship in fer-
tilized trees were mainly a result of a strong decrease in the
slope of the relationship in the unfertilized trees during the
season (Figure 3C).

The seasonal pattern of mean canopy Ma per treatment and
per date (50 leaves) was not affected by nitrogen fertilization
(Figure 3A). Both fertilized and control trees had similar sea-
sonal patterns with almost constant values of Ma during the
season.

The fertilization treatment dramatically affected seasonal
values of both Nm and Na expressed as the mean canopy value
per treatment and per date (Figures 3B and 3D). At the last
sampling date, both Nm and Na were about 30% higher in fertil-
ized trees than in control trees.

Discussion

Partitioning of leaf mass was related to canopy light gradients
independently of N fertilization (Figure 1). Correlation be-
tween Ma and light availability at the leaf site has been exten-
sively documented (Jackson 1967, Lewandowska and Jarvis
1977, Chabot et al. 1979, Gulmon and Chu 1981, Marini and
Barden 1982, Jurik 1986, Weinbaum et al. 1989, Sanchez and
Righetti 1990, Klein et al. 1991, Campbell et al. 1992, Kull
and Niinemets 1993, Wayne and Bazzaz 1993, Reich and
Walters 1994, Niinemets 1997). However, the Ma–light rela-
tionship has usually been investigated within one canopy or
plant community without variation in soil N availability. If
soil N availability is varied during shoot growth, the main ef-
fect of N fertilization is an increase in canopy size and inter-
cepted light with distribution of total canopy N into larger leaf
mass (Gulmon and Chu 1981, DeJong et al. 1989, Walters and
Reich 1989, Thompson et al. 1992). Greater canopy size re-
sults in increased canopy self-shading and the optimum LAI
developed for a given pool of N depends on the species, but
generally increases with increasing soil N availability
(Dingkuhn et al. 1990, Anten et al. 1995, Hirose et al. 1997).
Increased canopy size following N fertilization is also associ-
ated with a reduction in Ma for a given irradiance above the
plants (Oxman et al. 1977, Longstreth and Nobel 1980,
Gulmon and Chu 1981, Jurik et al. 1982). Our data suggest
that a given irradiance at the leaf level corresponds to a given
Ma, independently of soil N availability and its effect on can-
opy size and light distribution. Therefore, the reduction in Ma

often associated with N fertilization may result from increased
shading, because soil N availability does not affect the re-
sponse of Ma to light. Thus, Ma may be considered a spe-
cies-specific estimate of long-term light conditions as
suggested by Niinemets (1997), even across different N nutri-
tion regimes.
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Figure 2. Relationship between leaf N per unit mass (Nm) and leaf N
per unit area (Na) and leaf mass per unit area (Ma) on Days of year
193, 234, 283. Fertilizer treatment was applied on Day 193. Open cir-
cles represent fertilized trees; and closed circles represent control
trees.

Figure 3. Seasonal patterns in mean canopy values of leaf mass per
unit area (Ma; A), leaf nitrogen per unit mass (Nm; B), the slope of the
Na–Ma relationship (C), and leaf nitrogen per unit area (Na; D). Open
circles and solid lines represent fertilized trees; and closed circles and
dashed lines represent control trees. Error bars represent the SE of the
means.



Nitrogen fertilization did not affect the mean canopy value
of Ma (Figure 3A). Both fertilized and unfertilized trees had
similar seasonal patterns of Ma. Because N fertilizer was ap-
plied after maximum shoot elongation in the second experi-
ment, light availability on the tagged shoots was similar
between fertilized and control trees. Lower Ma values on fertil-
ized trees would probably have been found if N fertilization
had been applied early enough to stimulate extensive canopy
growth and thereby significantly increase canopy self-shad-
ing.

Although soil N availability did not affect the Ma–light rela-
tionship, N fertilization resulted in a continuous increase in Nm

relative to the control trees (Figure 3B). However, the increase
in Nm was relatively homogeneous within the canopy at all
dates and no significant relationship was found between Nm

and Ma in either fertilized or control trees, even during the
early dates after N fertilization of the N-deficient trees (Fig-
ure 2). That is, leaves with the highest Ma had N concentrations
similar to leaves with the lowest Ma. These results are consis-
tent with studies on other tree species (Weinbaum et al. 1989,
Klein et al. 1991, Ellsworth and Reich 1993, Harley and
Baldocchi 1995, Hollinger 1996, Niinemets 1997). Although
Nm was constant across the wide range of canopy Ma values
within each nitrogen treatment, fertilized trees had higher leaf
N concentration than control trees (cf. Gulmon and Chu 1981,
Beutel et al. 1983, DeJong et al. 1989, Thompson et al. 1992,
Saenz et al. 1997). Therefore, N fertilization did not result in
preferential allocation of N, but rather caused a general in-
crease in Nm at all sites independently of leaf irradiance. A pre-
vious study on peach trees (DeJong et al. 1989) showed a
slight positive relationship between light exposure and Nm

(r2 from 0.08 to 0.42 for all regressions) and Nm only increased
about 10–20% over the range of irradiances within each N fer-
tilization treatment. Niinemets (1997) listed peach trees
among those with constant Nm with varying irradiance. Al-
though Nm in peach tree canopies may vary by about 10–20%
(DeJong et al. 1989) or not at all (this study) in response to
light within each N fertilization treatment, Ma varies about
3-fold (DeJong et al. 1989, Rosati et al. 1999), indicating that
Na (Na = NmMa) is mostly affected by Ma.

Nitrogen fertilization increased the slope of the Na–Ma rela-
tionship (Figures 2 and 3C) and mean canopy Na (Figure 3D).
Previous data (DeJong et al. 1989, Walters and Reich 1989,
Rosati et al. 1999) also indicate that the slope of the Na–Ma re-
lationship increases with increasing N fertilization. The differ-
ence in the slope between fertilized and control trees increased
during the season, probably as a result of increasing N uptake
with time after fertilizer application. We conclude, therefore,
that the slope of the Na–Ma relationship increases proportion-
ally with total N availability, whereas the intercept remains at
zero. This relationship is independent of the source of varia-
tion in N availability, whether the source is time after applica-
tion or amount applied.

Because N fertilization did not induce partitioning of Nm to-
ward outer leaves (high Ma), the increase in the slope of the
Na–Ma relationship must have resulted from a uniform in-
crease in Nm in response to fertilization. This effect can be ex-
plained by considering that Na is the product of Nm and Ma. If

leaf N concentration is constant within one N fertilization
treatment, (i.e., one canopy), Nm becomes the slope of a linear
relationship between Na and Ma with a zero intercept. Conse-
quently, if N fertilization increases Nm uniformly in the can-
opy, then the slope of the Na–Ma relationship is also increased,
whereas the intercept remains near zero. Thus, the apparent
higher partitioning of leaf N on an area basis (Na) toward the
outer-canopy leaves with increasing soil N availability results
from the homogeneous distribution of leaf N concentration
(Nm) in leaves of different mass (Ma).

Previous research on the leaf nitrogen–light relationship has
focused on N partitioning in terms of Na, thereby confounding
the variation in both Nm and Ma and preventing estimation of
leaf construction costs on whole-plant energy capture
(Givnish 1988). In our study, the distribution of Ma along the
light gradient and the uniform increase in Nm within the can-
opy with increasing N availability appeared to be independent
phenomena. Therefore, it seems that, in peach trees or in spe-
cies with constant Nm throughout the light gradient, Na can be
modeled as the product of Ma, which depends on leaf light ex-
posure independent of N fertilization, and Nm, which varies
with total N availability independent of irradiance. Given the
close relationship between Na and photosynthesis, this pro-
posed modeling of canopy Na distribution could be extended
to modeling of photosynthetic properties (Gulmon and Chu
1981, Field and Mooney 1986, Hirose and Werger 1987,
DeJong et al. 1989, Walters and Reich 1989, Keulen et al.
1989). For a given Na, variations in within-leaf N partitioning
among the different photosynthetic N fractions in response to
light could be included (Björkman 1968, Medina 1971,
Terashima and Evans 1988, Evans 1989a). However, in peach
trees as well as in Acer saccharum, within-leaf N partitioning
appears to have a limited effect on leaf photosynthetic proper-
ties compared with within-canopy Na (Niinemets and
Tenhunen 1997, Rosati et al. 1999). Seasonal and age effects
on Ma and Nm could also be included in such models (Reich et
al. 1991); however, the gradient in leaf N concentration may
only be strongly affected by leaf age under N-deficient nutri-
tion (cf. Hikosaka et al. 1994).
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