AJEV Papers in Press. Published online September 26, 2018.

AJEV PAPERS IN PRESS • AJEV PAPERS IN PRESS

1	Research Article
2	Performance of a Chill Overlap Model for
3	Predicting BudBreak in Chardonnay Grapevines
4	over a Broad Range of Growing Conditions
5 6	Maria Teresa Prats-Llinàs, ¹ * Theodore M. DeJong, ² Katherine S. Jarvis-Shean, ³ Joan Girona, ¹ and Jordi Marsal ¹
7 8 9 10 11	¹ Efficient Use of Water in Agriculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Parc de Gardeny (PCiTAL), Fruitcentre, 25003, Lleida, Spain; ² Department of Plant Sciences, University of California Davis, One Shields Avenue-Mail Stop 2, CA 95616; and ³ University of California Cooperative Extension, Sacramento, Solano and Yolo Countries, 70 Cottonwood Street, Woodland, CA 95695.
12	*Corresponding autor (teresa.prats@irta.cat; tel: + 34 973032850 ext. 1592)
13 14 15 16 17 18 19 20	Acknowledgments: The work was funded by Spain's National Institute for Agricultural and Food Research and Technology (INIA) [RTA 2012-00059-C02-01], which belongs to the Ministry of Economy and Competitiveness, and by the European Social Fund. The authors would like to acknowledge the collaboration of Mr. Antonio Abat from the Codorniu winery, Mr. Luis Sanchez from the Gallo winery, and Dr. Michael Sipiora and Ms. Amanda Chilar from Treasury Wine Estates for providing the database. We would also like to thank Dr. Luis Alberto Mancha and Dr. Alexander Levin for providing data from regions of Spain and California and the staff of the IRTA's Efficient Use of Water in Agriculture Program, particularly Dr. Joaquim Bellvert and Dr. Gerardo López from ITK for their support.
21	Manuscript submitted Jan 8, 2018, revised Jun 12, 2018, accepted Aug 17, 2018
22	Copyright © 2018 by the American Society for Enology and Viticulture. All rights reserved.
23	
24	Abstract: Predicting phenological stages through modelling has significant implications for
25	planning viticultural practices and for predicting the impact of climate change on phenology. The
26	Chill Overlap Model is based on an exponentially declining curve which integrates the
27	demonstrated compensatory relationship between chill and heat accumulation. It also
28	incorporates recent research-based knowledge of physiological changes during dormancy. The
29	aim of this work was to develop parameters in order to create a Chill Overlap Model for
30	predicting bud break in Vitis vinifera cv. Chardonnay grapevines. We also wanted to determine if
31	using a Chill Overlap Model could be better at predicting bud break than previously developed

32	phenology models. The Chill Overlap Model incorporated the use of the Dynamic chill
33	accumulation model, for quantifying accumulation of chill exposure with a cultivar that has a
34	relatively low chill requirement. Bud break timing determined in the Californian and Spanish
35	wine grape-growing regions, which represent a wide range of climates, was used to establish the
36	parameters for a Chill Overlap Model for Chardonnay. The newly developed Chardonnay Chill
37	Overlap Model did not succeed in predicting bud break any better than previous models, but it
38	did highlight significant differences between the dynamics of chilling in grapevines compared to
39	other species on which a Chill Overlap Model had previously been employed. Further research is
40	needed to account for the environmental and vineyard management factors that influence the
41	timing of bud break in order to improve the model and to better understand factors that influence
42	the completion of dormancy in grapevines.
43	Key words: chill and heat requirements, chill portions, dynamic chill accumulation model,
44	modeling, phenology, temperature
45	Introduction
46	Phenological models have relevant applications in viticulture, from planning viticultural
47	practices (Williams et al. 1985, Caffarra and Eccel 2010) to modelling carbon dioxide fluxes
48	(Richardson et al. 2013, Pope et al. 2014). Recent research has focused on predicting the impact
49	of climate change on plant phenology and developing strategies to mitigate its possible effects on
50	crop behavior (Chuine 2000, Richardson et al. 2013, Darbyshire et al. 2016).
51	Bud break in grapevines indicates the onset of vegetative growth (Duchêne et al. 2010).
52	Any delay during this stage could have a significant impact on the seasonal growth cycle,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

53	making it a key phenological stage, with major site-to-site and cultivar variability (García de
54	Cortázar-Atauri et al. 2009). Ambient temperature is widely considered to be the main climatic
55	driver responsible for phenological development (Williams et al. 1985, Martin and Dunn 2000,
56	Jones 2003, García de Cortázar-Atauri et al. 2009, Caffarra and Eccel 2010, Duchêne et al. 2010,
57	Nendel 2010). Even so, other factors have also been reported to modify grapevine phenology;
58	these include soil temperature, soil texture (Jones 2003), photoperiod and water stress (Parker et
59	al. 2013).
60	Dormancy is described as a temporary suspension of growth caused by physiological
61	changes in buds (Lang et al. 1987). The timing of its release depends on the exposure of buds to
62	winter chill to end the period of endodormancy, followed by a period of the spring heat that
63	releases ecodormancy and triggers bud break (Caffarra and Eccel 2010, Pope et al. 2014). Chill
64	and heat are needed to release the corresponding dormancy stages and this translates into specific
65	temperature exposure requirements for different species and cultivars (Chuine 2000).
66	The grapevine growth models used to predict bud break are mainly based on the
67	computation of heat accumulation during spring, which is also known as Thermal Time (Cannell
68	and Smith, 1983), from a given date until a species-dependent threshold is reached. Under such
69	models, which are referred to as Spring Warming models (Hunter and Lechowicz, 1992), the
70	chilling requirements are assumed to be met every year (Pope et al. 2014). However, it has been
71	observed that such models may be inappropriate for Mediterranean climates, which occasionally
72	have mild winters in which the required minimum amount of chill may not be met (Pope et al.
73	2014), or for areas in which climatic conditions are tending to produce warmer winters

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

74	(Luedeling and Brown, 2011). Other models, called sequential models, treat winter chill and
75	spring heat accumulation as independent phases that are fulfilled sequentially (Kramer 1994).
76	Complex sequential models that have been developed for Chardonnay (Vitis vinifera) and
77	some other grape cultivars, have provided knowledge about developmental responses to
78	environmental drivers. Indeed, García de Cortázar-Atauri et al. (2009) developed the BRIN
79	model by adding more biological and physiological explanations about grapevine crops to a
80	phenological modelling framework. Theirs was the first grapevine model to predict bud break on
81	the basis of physiological mechanisms as a framework for heat accumulation approaches.
82	Caffarra and Eccel (2010) built the FENOVITIS model for the Chardonnay cultivar, adding
83	complex model parameters to integrate a negative relationship between the chill and heat
84	accumulation stages with set chilling requirements previously described by Cannell and Smith
85	(1983), Chuine (2000) and Harrington et al. (2010).
86	In studies of deciduous trees, it is often assumed that chilling and heat accumulation
87	requirements must be fulfilled one after another, up to a fixed threshold. However, this
88	sequential fulfilment of the chill and heat requirements is often based on a very simplified
89	understanding of the dormancy breaking processes (Luedeling et al. 2009). Measuring the
90	specific periods in which buds are influenced by chilling and warming temperatures is
91	challenging (Chuine 2000). Moreover, complex processes are likely to be involved in the
92	transition from dormancy to bud break in grapevines (Fila et al. 2014). Although it is known that
93	specific proteins appear to contribute to the induction and release of bud dormancy, extensive
94	molecular biological analyses are required to further understand the physiological, biochemical
95	and genetic basis of grapevine bud dormancy (Lavee and May 1997, Nendel 2010).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

96	Dormant buds undergo major changes when chilling requirements are fulfilled. These
97	include changes to membranes and to the fatty acid ratios in their phospholipids (Faust et al.
98	1997). In fact, research has shown that the relationship between chilling, post-rest and bud break
99	is complex. Following recent findings on genetic dormancy control (Horvath 2009, Leida et al.
100	2012), Pope et al. (2014) suggested that there could be a considerable overlap between chill and
101	heat requirements. While working on peach (Prunus persica), it was observed that once the
102	minimum chill requirement has been met, but before bloom occurs, there is a decreased
103	expression of the genes responsible for the response to cold with continued chill exposure
104	(Yamane et al. 2011).
105	Following these principles, recently developed Chill Overlap Models have attempted to
106	integrate possible interactions between chill and heat accumulation. An exponential declining
107	curve was fitted to describe the decreasing requirements for post-chill heat accumulation in
108	response to prolonged exposure to chilling temperatures. This model contemplates a partial
109	compensatory relationship between the chilling and post-chill heat requirements necessary to
110	finally trigger bud break (Pope et al. 2014). Comparing the conceptual basis for this model with
111	other recently developed models for Chardonnay may help to increase our understanding of the
112	biological and physiological behavior of grapevines during the dormancy period. Chill Overlap
113	Models have already been developed for deciduous almond (Prunus dulcis) and apple (Malus
114	domestica) trees, and have shown significant improvements over previous prediction models
115	(Pope et al. 2014, Darbyshire et al. 2016).
116	Furthermore, the chill overlap model calculates chill accumulation using the Dynamic

117 chill accumulation model (Fishman et al. 1987). This chill accumulation model has been found to

perform either better than, or at an equivalent level to other commonly used chill accumulation
methods, when applied for various locations and cultivars (Erez 2000, Ruiz et al. 2007,
Luedeling et al. 2009, Pope et al. 2014, Darbyshire et al. 2016). The negation of chill due to high
temperatures, which is imbedded in the Dynamic chill accumulation model, has not been
previously tested for grapevines. It could, however, provide interesting perspectives for bud
break predictions in warm climates (Dokoozlian 1999, Fila et al. 2014).
The aim of this work was to develop parameters for a Chill Overlap Model for predicting
bud break of the Chardonnay grape cultivar and to determine whether such a model would be
capable of improving bud break prediction over a broad range of growing conditions. Bud break
data from different grape-growing regions in California and Spain were used to develop and test
the predictive capacity of the model. This was done using observations from a range of different
locations so as to evaluate the reliability of the model under different climatic conditions.
Materials and Methods
Bud break and weather station data
Bud break data for the Chardonnay cultivar were used to parameterize and validate the
performance of the Chill Overlap Model (Pope et al. 2014). Wineries and research institutions
from different parts of California (USA) and Spain provided phenological data for different
locations (Figure 1). Bud break was considered to have been achieved when 50 % of buds were
open. However, it was not possible to apply a specific scale for all of the data sources so 50%
bud break was estimated for some locations.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

138	Daily maximum and minimum temperature data were acquired from the nearest weather
139	station to each vineyard site (Table 1). Weather data for California (USA) were obtained from
140	the California Irrigation and Management Information System (CIMIS,
141	www.cimis.water.ca.gov). In Spain, weather data were retrieved from the Meteorological Service
142	of the Catalonian Government (SMC, www.ruralcat.net/web/guest/agrometeo.estacions) (Raïmat
143	and Sant Sadurni d'Anoia locations) and the Irrigation Advice Network of Extremadura
144	(REDAREX, redarexplus.gobex.es/RedarexPlus/) (Badajoz location) (Figure 1). In cases of
145	missing temperature data at a specific station, equivalent data were used from the nearest
146	weather station. In some cases, when several phenology observation sites were located near the
147	same weather station (i.e. Windsor, Carneros), mean bud break data were calculated and used
148	with temperature data taken from the same station.
149	Phenology data were divided into two independent parameterization ($n=42$) and
150	validation ($n=39$) subsets. The criteria used for these datasets had representative climatic
151	conditions for both subsets. Covering the most representative climatic conditions enabled testing
152	the robustness of the model (Figure 2).
153	Description of the Chill Overlap Model
154	The Chill Overlap Model is based on an exponentially declining curve representing the
155	possible combinations of chill accumulation (C_a) and heat accumulation (H_a) that result in bud
156	break (Harrington et al. 2010). Two sub-models were used to quantify winter chill and spring
157	heat from the onset of the dormancy period until bud break (Pope et al. 2014).
158	Chill accumulation was determined using the Dynamic model (Fishman et al. 1987) and

159 involved a two-step process. In the first step, a chill intermediate was formed or destroyed

160	according to an hourly bell-shaped temperature relationship. The formation of chill intermediates
161	was enhanced in cold temperatures, with an optimal efficacy at 6-8 °C, and the negation of
162	previously accumulated chill intermediates if temperatures exceed a specific threshold (24°C). In
163	the second step, the chill intermediate was computed as a single Chill Portion (CP), which could
164	not be negated by subsequent warmer temperatures. One Chill Portion (CP) is equivalent to a
165	period of 30 hours of continuous chill exposure at \leq 6°C (Erez and Fishman 1998).
166	Heat accumulation was calculated using the Growing Degree Hour (GDH) ASYMCUR
167	Model (Anderson et al. 1986). In line with the model described in Anderson et al. (1986), the
168	acquisition of heat was taken as an hourly asymmetric curvilinear model defined by two cosine-
169	type equations based on three threshold temperatures (base temperature=4°C, optimum
170	temperature=25°C, critical temperature=36°C), which determined the accumulation of Heat Units
171	(HU). A base temperature of 10°C was also tested with this model.
172	Hourly temperatures were required as inputs for the Dynamic chill accumulation and
173	GDH ASYMCUR models. Daily maximum and minimum temperatures were then interpolated
174	into hourly data following Linvill (1990) and the specific parameters of each weather station
175	location were used for both the parameterization and validation datasets (Table 1).
176	The chilling requirement (C_r) is the minimum amount of accumulated chill required for
177	bud break to occur, and the heat requirement (H_r) is the minimum amount of accumulated heat
178	required for bud break to be possible. According to Pope et al. (2014), the C_r should be satisfied
179	before any additional chill (C_a) modifies any specific part of the heat accumulation (H_a) phase
180	and results in an overlap between the two phases. This is defined by Eq. (1) and shown in Figure
181	3:

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

182	$H_a = \beta_1 + \frac{\beta_2}{(\beta_2 + \gamma_1 C_2)}$	(1)
	$\mu = \rho(p_3 \chi U_{fl})$	

- 183 H_a , heat accumulation from C_r to bud break
- 184 C_a , chill accumulation after C_r has been met
- 185 β_1, β_2 and β_3 , model parameters

186 The β_1 model parameter, defined as the lowest heat accumulation required for bud break

187 to be possible, is equivalent to H_r . In fitted models, it correlates with heat accumulation

188 experienced in high chill years/climates. β_2 corresponded to the difference in heat accumulation

between the highest and the lowest observation values ($\beta_2 = H_o - H_r$), which is estimated by data

190 accumulated during mild winters. The β_3 parameter was related to the shape of the curve, based

191 on values ranging between 0 and 1 that define this shape (Pope et al. 2014).

192 Development of model parameters and parameterization

193 The Chill Overlap Model parameters were fitted following Pope et al. (2014) and

194 Darbyshire et al. (2016). The chilling requirement (C_r) had to be estimated, as no previous

195 experiments had been conducted to evaluate it. The onset of chilling was considered to occur on

196 October 1 (Jarvis-Shean et al. 2015). The minimum value of chill accumulation measured

197 throughout the period for all sites and years (October 1 to March 31) was tested as the maximum

198 C_r with 1 CP increments. According to our dataset, the range tested was from 1 to 31 CP (Spain -

199 Sant Sadurni d'Anoia, 2012). The overlap interval values tested ranged from 10 % to 90 %, with

200 increments of 5% (Figure 3).

For each C_r tested, the starting values used to fit the model parameters were estimated from parameterization datasets. The lowest value of H_a was used as an estimation of β_I . The

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

203	difference between the highest and lowest H_a values was estimated as $\beta_2 = H_o - H_r$, and the
204	starting value for β_3 was 0.0001 (Eq. 1).
205	Non-linear regression algorithms were applied to fit the model. The Levenberg-Marquart
206	algorithm in the Curve Fitting Toolbox of MATLAB software (MATLAB and Statistics Toolbox
207	Release 2014b, The MathWorks, Inc., Natick, Massachusetts, United States) was chosen instead
208	of a trust-region algorithm because it required fewer iterations to find the most appropriate fit
209	values for the model. Negative values of β_1 and β_2 where dismissed based on them lacking
210	biological sense: for example, heat accumulation cannot have negative values (Pope et al. 2014).
211	Evaluation of model parameters
212	Three indices were evaluated to obtain values for the model parameters. The information-
213	theoretic approach Akaike Information Criterion (AIC _C) was used to make comparisons within
214	each C_r , with the model with the lowest value of AIC _C following Burham and Anderson (2002).
215	Models with different C_r values could not be compared because of the change in the response
216	variable that resulted in lower C_r values associated with earlier heat accumulation (Pope et al.
217	2014). Candidate model parameters were also evaluated considering R ² and Root Mean Square
218	Error (RMSE) values. The models with the best parameters were evaluated in the same way,
219	using the validation dataset.
220	Results

221 Selected candidate models prioritized according to the lowest AIC_C, highest R² and 222 lowest RMSE values using parameterization data are presented in Tables 2 and 3. Testing several 223 overlaps (from 10 to 90% with increments of 5%) for the range of Chill Portions selected (from 1

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

224	to 31), an AIC _C with a value of 346.62, a R^2 of 0.54 and a RMSE of 8.86 were obtained with a C_r
225	of 9 CP and a 40 % overlap (Table 2) (Figure 4A, Figure 4B). The corresponding Chill Overlap
226	Model parameter values were 6110, 9657 and 0.0463, for β_1 , β_2 and β_3 , respectively (Table 2).
227	An evaluation of the same overlap with different chilling requirements is presented in Table 3.
228	Changing the C_r value from 9 CP did not improve the performance of the model.
229	These parameters were then validated by applying the same model parameters to an
230	independent dataset. The model fit for the validation data set was better than for the
231	parameterization data set, with a C_r of 9 CP and a chill-heat overlap of 40% resulting in an R ² =
232	0.69 and an RMSE of 7.32 days (Table 2 and Table 3) (Figure 5). This indicates that the
233	previously chosen model parameters were as valid as could be expected.
234	The analysis of model RMSE was most accurate for data from the Central Valley (CA),
235	with values of 7.09 and 6.13 days, for parameterization and validation, respectively. Model
236	performance was less accurate at warmer winter locations such as on the Central Coast (CA)
237	(9.00 for parameterization and 10.00 days for validation) and the South Central Coast (CA)
238	(10.60 for parameterization and 8.49 days for validation) (data not shown), possibly because
239	fewer data points from these locations were available for initially fitting the model. (Figure 4B,
240	Figure 5).

241

Discussion

242 Model approach

In accord with the structure of the Chill Overlap Model, in addition to the C_r , in locations where prolonged chill accumulation occurred, there was a decrease in the heat requirements

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

245	needed to reach bud break. In contrast, in warmer locations, where less chill was accumulated,
246	more heat was required to trigger bud break. In our study, cooler conditions resulted in a later
247	bud break (in Spain), while warmer conditions produced an earlier bud break (the Central Coast
248	and South Central Coast California locations) (Table 1). A delay in the induction of dormancy
249	attributable to high temperatures has been previously reported for Chardonnay (Caffarra and
250	Eccel 2010). This suggests that mild fall temperatures may contribute to earlier dormancy,
251	whereas warm temperatures, above 20°C, may delay it (Caffarra and Eccel 2010). During the
252	same period, it was reported that low temperatures led to a more rapid chill accumulation in
253	Chardonnay, and therefore to an earlier ecodormancy transition (Cragin et al. 2017).
254	The parameterizing dataset seemed to provide sufficient data, including extreme values,
255	to estimate C_r , H_o and H_r and consequently fit the model parameters. The estimated parameters
256	presented some differences between the starting values and the fitted parameters (data not
257	shown). According to the interpretation of the model parameters (Pope et al, 2014), the lower the
258	fitted β_3 value is, the more linear the relation between C_a and H_a will be. As a consequence, the
259	value of β_1 should be lower and the value of β_2 should be higher. This was not, however, true of
260	all the cases analyzed in the current study (Table 2, Table 3). These discrepancies were difficult
261	to explain by the curved relationship between chill and heat, particularly considering the
262	numerous studies that have shown this relationship in temperate perennial species (Chuine 2000,
263	Harrington et al. 2010). Given this failure to find an appropriate model, it is recommended to
264	experimentally determine the value of C_r and to fit the values directly, rather than trying various
265	different C_r options and increasing model curvature to compensate for this lack of knowledge
266	(Dennis 2003, Pope et al. 2014). To provide further insight into the accuracy of models used with

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

fruit trees, it is necessary to add endodormancy break dates. This should then yield more robustprojections of phenological changes (Chuine et al., 2016).

269 Model performance

270 The Chill Overlap Model which was developed with this research did not substantially 271 improve the accuracy of bud break prediction compared to previously phenological models 272 developed for the Chardonnay cultivar, under specific locations and climatic conditions (García 273 de Cortázar-Atauri et al. 2009, Caffarra and Eccel 2010). However, compared to the Chill 274 Overlap Model developed for other species, these models were able to improve previous models 275 accuracy (Pope et al. 2014 and Darbyshire et al. 2016). Improving model accuracy was not the 276 first objective of this work, while our aim was to evaluate if the Chill Overlap Model could 277 improve the understanding of the processes involved during dormancy to bud break transition. In 278 this study, the data used for model development covered a wider geographical area for the 279 Chardonnay cultivar than in previous studies and this may have been one reason for its only 280 modest level of accuracy.

281 The variations in phenological data sources may also have been an important reason for 282 the limited accuracy of the model developed, given that the criteria for determining the exact 283 onset of bud break was not uniform across sites and locations. Although bud break was generally 284 considered to take place when 50 % of buds were open, determining the exact day of bud break 285 likely varied depending on the number of days between observations and the person who was 286 collecting the data. In addition, the weather data were not recorded directly adjacent to the vines 287 whose phenology was being observed. Therefore there may have been differences between the 288 temperatures recorded at the weather stations and those experienced in the vineyards, particularly

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

289	in the case of differences in altitude (Nendel 2010) (Table 1). Furthermore, it should be noted
290	that maximum and minimum daily temperature data were used to estimate hourly chill and heat
291	accumulation. The use of actual mean hourly temperatures would have been more accurate for
292	determining temperature accumulation but these data were not available for all sites.
293	Clonal behavior may change depending to location, being mainly affected by
294	microclimates and soils (Fidelibus et al. 2006, Jones et al. 2014). Since in our study Chardonnay
295	clones were not identified in all locations, we should consider clones as a possible source of
296	variability difficult to evaluate in this analysis.
297	The variability in phenology at a given location may be explained by microclimatic
298	differences (Verdugo et al. 2016). This could affect phenological development as a consequence
299	of specific changes in environmental conditions at a very local level. In the California region, for
300	example, phenology performance may have been affected by microclimate differences in the
301	Central Valley and especially in the North Coast regions where there can be strong local
302	differences in air movement (Figure 4B, Figure 5). Another important factor may have been the
303	distance between the weather stations and the observation vineyards (Table 1). Although the
304	Central Valley (CA) region is characterized as being flat, the distance between the sites and
305	weather stations could have been more than 10 km, and this could have been a significant source
306	of error in model performance.
307	Air temperature has been widely reported to be the main driver of phenology. Depending
308	on net radiation, the differences between air and bud temperature may be $0.5 - 2^{\circ}$ C, but on foggy
309	days this relationship changes to $\sim 0.1 - 0.2$ °C (Itier et al. 1987). Fog tends to reduce bud

310 temperature and to therefore increase chill accumulation. However, the incidence of fog

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

311	formation is highly variable on a year-to-year basis, being the result of many complex and
312	conditional meteorological factors. The general trend in the California region has been for a
313	decrease in the number of winter fog events, which tend to be characterized by sustained periods
314	with air temperatures below 7°C. Possible consequences of there being less fog include warmer
315	air and an increase in direct sun exposure, which amplifies warming and reduces chill
316	accumulation (Baldocchi and Waller 2014).
317	Orchard management may also potentially influence microclimates through effects
318	associated with canopy management, cover cropping and the irrigation regime (Luedeling et al.
319	2009). Grapevine management practices, for example, have been reported to influence the
320	completion of bud break. In post-harvest irrigation experiments, cutting off irrigation early has
321	been reported to advance the bud break stage with the Perlette cultivar (Williams et al. 1991).
322	Similar responses were observed in an experimental vineyard of Chardonnay grown at Raïmat,
323	Lleida, Spain, during Spring 2016 (J. Marsal personal communication). Late pruning slightly
324	delayed bud break in Cabernet Sauvignon (Martin and Dunn 2000) and Sauvignon Blanc
325	grapevines (Trought et al. 2011).
326	Chill and heat accumulation

According to Faust et al. (1997) and Chuine (2000), specific changes in dormant buds are not initiated until there has been sufficient chilling to break endodormancy, after which bud growth will respond to warm temperatures. Over a range of temperatures, chill accumulation in grapes was evaluated to be most efficient at 2.8 °C (Caffarra and Eccel 2010). A recent study conducted with Chardonnay canes indicated that three weeks of exposure to temperatures of -3 °C was also effective for releasing endodormancy (Cragin et al. 2017). The Dynamic chill model,

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

333	which was used to evaluate chill accumulation in the Chill Overlap Model, considered 6-8°C to
334	be the optimum temperature range for chill accumulation. This model also considers the effects
335	of negation of chill associated with a period with temperatures above 20°C. To the best of our
336	knowledge, the dynamic chill model had not previously been used to test grapevine species
337	(Dokoozlian 1999). Even though the chill models described in the literature are often not
338	comparable because the accumulated chilling units differ from site to site, previously tested chill
339	models and the experiments performed on grapevines provide some basis for comparisons
340	(García de Cortázar-Atauri et al. 2009, Caffarra and Eccel 2010). The dynamic chill
341	accumulation model seemed to be the most appropriate one for measuring chill in this study
342	because of the range of climates present in the dataset.
343	For most plants, 10 °C is considered the best base temperature for growth. According to
344	Williams et al. (1985), 10 °C is an appropriate base temperature for calculating heat
345	accumulation to predict grapevine development, although several other reports indicate that a
346	lower base temperature may be more appropriate for predicting bud break (Duchêne 2010). A
347	base temperature of near 5 °C has been found appropriate for bud break prediction in two studies
348	(Moncur et al. 1989, García de Cortázar-Atauri et al. 2009).
349	In this study, the Growing Degree Hour (GDH) ASYMCUR Model (Anderson et al.
350	1986) was used to determine heat accumulation, considering a base temperature of 4°C. A base
351	temperature of 10°C during the endodormancy release period was also tested, but no
352	improvements in model prediction capacity were achieved. It therefore seems that a base
353	temperature of below 10°C may be suitable for predicting bud break, indeed, this has been used

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

in previously developed models for working with the Chardonnay cultivar (García de Cortázar-Atauri et al. 2009).

356 As the goal of this research did not include determining threshold temperature values for 357 chill and heat accumulation, we used published threshold values. Further research is clearly 358 needed to evaluate temperatures for the perception of chill and heat by buds during dormancy, 359 but due to other limitations on the dataset used in this study, it was not appropriate to pursue that 360 objective. Other factors may also affect the perception of chill and heat temperature by buds such 361 as the lack of synchrony in bud growth with apical buds opening before lateral due to their heat 362 requirements having been met earlier (Martin et al. 2000) and differences in bud vigor and in the 363 amounts of carbon and nitrogen reserves (Ben Mohamed et al. 2010).

364 In this study Chardonnay was found to need ~ 9 CP compared to 13, 21 and 23 CP, 365 respectively, for the Sonora, Mission and Nonpareil almond cultivars (Pope et al. 2014), and 34 366 CP for the Crips Pink apple cultivar (Darbyshire et al. 2016). Eshghi et al. (2010) reported that, 367 compared with other deciduous fruit crops, grapevines grown in Iran do not have very high 368 chilling requirements and need relatively little exposure to chill. Our results were consistent with 369 this report. Considering that 1 CP is equivalent to 30 hours of continuous chill at 6°C (Erez and 370 Fishman 1998), the chilling requirement evaluated for Chardonnay may have been similar to a 371 chill exposure of 270 hours (9 CP x 30 hours/CP). Previous research using chill hours 372 accumulated between 0 and 10 °C found that 200 hours was the minimum chilling exposure 373 required for normal grape bud growth for the Perlette cultivar (Dokoozlian, 1999) and that 336 374 hours at temperatures below 6°C were required for Cabernet Sauvignon (Botelho et al. 2007).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

375	Although there is no exact equivalence between Chill Hour and Chill Portion
376	quantification, as they are not constant in time or space; it is reassuring that the differences
377	between species in terms of chill requirements (C_r) are consistent with different chill models, and
378	accentuate biological differences between species. Some studies have suggested that the
379	Dynamic chill accumulation model is most accurate for quantifying winter chill, and
380	understanding location-specific and year-to-year variability and that it performs best in warmer
381	areas (Luedeling et al. 2009).
382	Differences among species can be highlighted by comparing the values of the Chill
383	Overlap Model parameters. In addition to the low chill requirement of grapevines, the overlap
384	defined by the period with a compensatory relationship between the chill and heat requirements
385	appeared to be smaller in grapevines (40 %) than in almonds and apples (75 %) (Pope et al. 2014
386	and Darbyshire et al. 2016). As hypothesized by Pope et al. (2014), the amount of overlap may
387	vary according to the plant species. Grapevines, for example, appear to have less need for chill
388	than other species, even during the compensatory stage between the two requirements. On the
389	other hand, although having only a low chill demand, Chardonnay appeared to require the
390	perception of more heat, as shown in the β_1 fitted model parameter. This suggests that grapevines
391	could be a species in which additional heat may be more effective than additional chill above the
392	minimum chill requirement (C_r) .
393	Based on the Chill Overlap Model, the contribution of chill and heat to bud break differs
394	between grapevines and apples. Once C_r has been met in both species, cool locations with

395 considerable accumulations of chill and subsequent decreases in heat demand produce later

- 396 observations of bud break in grapevines, but earlier bloom in apples. In warmer locations, more

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

heat was required to meet bud break conditions and grapevines reached bud break earlier, while
with apples, additional time was need to reach flowering, with this stage being delayed
(Darbyshire et al. 2016).

400 Values of β_3 defined similar curves of roughly the same shape, but with different chill and 401 heat requirements from species to species. Additionally, a more precise estimation of chilling 402 requirements, obtained by forcing or through growth-room experiments, could increase model 403 curvature (Dennis 2003, Pope et al. 2014). A previous study demonstrated that models calibrated 404 with growth room data provided a good level of accuracy when tested on two different field-405 based datasets (Fila et al. 2012). The integration of data obtained by growth room experiments 406 combined with field observation data may yield more accurate model estimates (Fila et al. 2014). 407 Addition of other factors, such as the time of pruning, into the models may also improve their 408 performance (Martin and Dunn 2000).

409 More research is needed to improve the accuracy and utility of phenology models. For 410 example, it would be valuable to be able to predict the potential impact of climate change on the 411 suitability of using specific grape cultivars in some future growing regions. The results of the 412 Chill Overlap Model for the Chardonnay grapevine did not significantly improve bud break 413 predictions compared to simpler phenological models previously developed for the same cultivar 414 (García de Cortázar-Atauri et al. 2009, Caffarra and Eccel 2010). However, the fact that the 415 model attempted to integrate the overlapping effect of chill accumulation on the subsequent heat 416 accumulation, which has been empirically observed in the field, shows that it would be 417 worthwhile to try to improve the model. This could be done by accounting for several of the 418 sources of potential non-temperature related variability in bud break highlighted in this work.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

419	Conclusion
420	This study provided a new set of parameters for modelling bud break in Chardonnay
421	grapevines using the Chill Overlap Model. Even though model performance did not show
422	substantial predictive improvements over previous bud break models, the model provides a
423	framework for analyzing synergistic interactions between chill and heat accumulation
424	requirements prior to bud break in grapevines. The results were acceptable considering the wide
425	range of climates involved and the potential sources of inaccuracy in the data sets used.
426	Knowledge of the possible influences of environmental factors and management practices at
427	specific locations should help to reduce inaccuracies in the predictions obtained and lead to
428	further model improvement.
429	The study also confirmed the apparent low chill requirement of Chardonnay and the fact
430	that temperatures below 10°C seemed to be effective in fulfilling its chill requirement. On the
431	other hand, the study supported Chardonnay's need to receive substantial amounts of warmth to
432	achieve bud break. These factors need to be considered for understanding how increases in
433	temperature due to climate change could affect its behavior and adaptability.
434	This model includes potential interactions between cold and warm temperatures that
435	could help to further our understanding of plant physiology and crop behavior during dormancy
436	and bud break. Even though all the phenological models present simple interpretations to predict
437	complex realities, this model is sufficiently complex and does not require expensive experiments
438	to evaluate its performance.
439	

440	Literature Cited
441 442	Anderson J.L., Richardson E.A. and Kesner, C.D. 1986. Validation of chill unit and flower bud phenology models for "Montmorency" sour cherry. Acta Hortic. 184:71-78.
443 444	Baldocchi D. and Waller E. 2014. Winter fog is decreasing in the fruit growing region of the Central Valley of California. Geophys. Res. Lett. 41:3251-3256.
445 446 447	Ben Mohamed H., Vadel A.M., Geuns J.M.C. and Khemira H. 2010. Biochemical changes in dormant grapevine shoot tissues in response to chilling : Possible role in dormancy release. Sci. Hort. 124: 440–447.
448 449	Botelho R.V., Pavanello A.P., Pires E.J.P., Terra M.M. and Muller M.M.L. 2007. Effects of chilling and garlic extract on bud dormancy release in Cabernet Sauvignon cuttings. Am. J. Enol. Vitic 58:402–404.
450 451 452	Burham K.P. and Anderson R.A. 2002. Model Selection and Multimodel Inference: A practical Information-Theoretic Approach. Burnham, K.P. and Anderson, D.R., eds. Information theory and loglikelihood models: a basis for model selection and inference, pp. 32–74. Springer, Berlin
453 454	Caffarra A. and Eccel E. 2010. Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. Int. J. Biometeorol. 54:255–267.
455 456	Cannell M.G.R. and Smith R.I. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20:951–963.
457	Chuine I. 2000. A Unified Model for Budburst of Trees. J. Theoret. Biol. 207:337–347.
458 459 460	Chuine I., Bonhomme M., Legave J.M., García de Cortázar-Atauri I., Charrier G., Lacointe A. and Améglio T. 2016. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Global Change Biol. 22:3444-3460.
461 462	Cragin J., Serpe M., Keller M. and Shellie K. 2017. Dormancy and Cold Hardiness Transitions in Wine Grape Cultivars Chardonnay and Cabernet Sauvignon. Am. J. Enol. Vitic. 68:195-202.
463 464	Darbyshire R., Webb L., Goodwin I. and Barlow E.W.R. 2013. Evaluation of recent trends in Australian pome fruit spring phenology. Int. J. Biometeorol. 57:409–421.
465 466	Darbyshire R., Pope K. and Goodwin I. 2016. An evaluation of the chill overlap model to predict flowering time in apple tree. Sci. Hort. 198:142–149.
467 468	Dennis F.G. 2003. Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience. 38:347–350.
469 470	Dokoozlian N. K. 1999. Chilling temperature and duration interact on the budbreak of "Perlette" grapevine cuttings. HortScience. 34:1054–1056.

- 471 Duchêne E., Huard F., Dumas V., Schneider C. and Merdinoglu D. 2010. The challenge of adapting
 472 grapevine varieties to climate change. Clim. Res. 41:193–204.
- 473 Erez A. and Fishman S. 1998. The dynamic model for chilling evaluation in peach buds. Acta Hortic.
 474 465:507–510.
- 475 Erez A. 2000. Bud Dormancy; Phenomenon, Problems and Solutions in the Tropics and Subtropics. A.
- 476 Erez, ed. Temperate Fruit Crops in Warm Climates. pp. 17–48. Dordrecht, Springer, Netherlands
- 477 Eshghi, S., Rahemi, M. and Karami, A. 2010. Overcoming Winter Rest of Grapevine Grown in
- 478 Subtropical Regions Using Dormancy-Breaking Agents. Iran Agricultural Research 29:99-109.
- 479 Faust M., Erez A., Rowland L.J., Wang S.Y. and Norman H.A. 1997. Bud dormancy in perennial fruit
- 480 trees: physiological basis for dormancy induction, maintenance, and release. HortScience. 32:623–629.
- 481 Fidelibus M.W., Christensen L.P., Katayama D.G. and Verdenal P.T. 2006. Yield components and fruit
- 482 composition of six "Cabernet Sauvignon" grapevine selections in the Central San Joaquin Valley,
- 483 California. J. Am. Pomol. Soc. 60:32–36.
- 484 Fila, G., Gardiman, M., Belvini, P., Meggio, F. and Pitacco, A. 2014. A comparison of different
- modelling solutions for studying grapevine phenology under present and future climate scenarios. Agric.
 For. Meteorol. 195–196:192–205.
- Fishman S., Erez A. and Couvillon G.A. 1987. The Temperature Dependence of Dormancy Breaking in
 plants: Mathematical Analysis of a Two-Step Model Involving a Cooperative Transition. J. Theor. Biol.
 124:473–483.
- 490 García de Cortázar-Atauri I., Brisson N. and Gaudillere J.P. 2009. Performance of several models for
- 491 predicting budburst date of grapevine (Vitis vinifera L.). Int. J. Biometeorol. 53:317–326.
- 492 Guak S. and Neilsen D. 2013. Chill unit models for predicting dormancy completion of floral buds in493 apple and sweet cherry. Hortic. Environ. Biote. 54:29–36.
- Harrington C.A., Gould P. J. and St. Clair J. B. 2010. Modeling the effects of winter environment on
 dormancy release of Douglas-fir. For. Ecol. Manage. 259:798–808.
- 496 Horvath D., 2009. Common mechanisms regulate flowering and dormancy. PlantSci. 177:523–531.
- Hunter A. and Lechowicz M. 1992. Predicting the timing of budburst in temperature trees. J. Appl. Ecol.
 29:297–604.
- 499 Itier B., Huber L. and Brun O. 1987. The influence of artificial fog on conditions prevailing during nights
- of radiative frost. Report on an experiment over a Champagne vineyard. Agric. For. Meteorol. 40:163-176.

- Jarvis-Shean, K., Da Silva, D., Willits, N. and DeJong, T.M. 2015. Using Non-Parametric Regression to
 Model Dormancy Requirements in Almonds. Acta Hortic. 1068:133-140.
- 504 Jones G.V. 2003. Phenology: an integrative environmental science. M.D. Schwartz, ed. Wine grape
- 505 phenology. pp. 523–539. Kluwer Press, Milwaukee, MA, Boston.
- 506 Jones J.E., Kerslake F.L., Close D.C. and Dambergs R.G. 2014. Viticulture for sparkling wine 507 production: A review. Am. J. Enol. Vitic. 65:407–416.
- 508 Kramer K. 1994. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol.509 31:172-181.
- 510 Lang G.A., Early J.D., Martin G.C. and Darnell R.L. 1987. Endo-, para-, and ecodormancy: physiological
- 511 terminology and classification for dormancy research. HortScience. 22:371–377.
- Lavee S. and May P. 1997. Dormancy of grapevine buds-facts and speculation. Aust. J. Grape Wine Res.3:31-46.
- 514 Leida C., Conesa A., Llacer G., Luisa Badenes M. and Rios G. 2012. Histone modifications and
- 515 expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent 516 manner. New Phytol. 193:67–80.
- 517 Linvill D.E. 1990. Calculating chilling hours and chill units from daily maximum and minimum 518 temperature observations. Hortscience. 25:14–16.
- Luedeling E., Zhang M., McGranahan G. and Leslie C. 2009. Validation of winter chill models using
 historic records of walnut phenology. Agric. For. Meteorol. 149:1854–1864.
- Luedeling E. and Brown P.H. 2011. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Biometeorol. 55:411–421.
- 523 Martin S.R. and Dunn G.M. 2000. Effect of pruning time and hydrogen cyanamide on budburst and
- subsequent phenology of Vitis vinifera L. variety Cabernet Sauvignon in central Victoria. Aust. J. Grape
 Wine Res. 6:31–39.
- Moncur M.W., Rattigan K., Mackenzie D.H. and McIntyre G.N. 1989. Base temperatures for budbreak
 and leaf appearance of grapevines. Am. J. Enol. Vitic. 40:21–26.
- Nendel C. 2010. Grapevine bud break prediction for cool winter climates. Int. J. Biometeorol. 54:231–
 241.
- 530 Parker A., García de Cortázar-Atauri I., Chuine I., Barbeau G., Bois B., Boursiquot J. M., ... van
- 531 Leeuwen C. 2013. Classification of varieties for their timing of flowering and veraison using a modelling
- approach: A case study for the grapevine species Vitis vinifera L. Agric. For. Meteorol. 180:249–264.

- 533 Pope K.S., Da Silva D., Brown P.H. and DeJong T.M. 2014. A biologically based approach to modeling
- 534 spring phenology in temperate deciduous trees. Agric. For. Meteorol. 198-199, 15-23.
- 535 Ramírez L., Sagredo K.X. and Reginato G.H. 2010. Prediction models for chilling and heat requirements
- to estimate full bloom of almond cultivars in the Central Valley of Chile. Acta Hortic. 872:107–112.
- 537 Richardson A.D., Keenan T.F., Migliavacca M., Ryu Y., Sonnentag O. and Toomey M. 2013. Climate
- 538 change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For.
- 539 Meteorol. 169:156–173.
- Ruiz D., Campoy J.A. and Egea J. 2007 Chilling and heat requirements of apricot cultivars for flowering.
 Environ. Exp. Bot. 61:254–263.
- 542 Trought M.C.T., Bennett J. S. and Boldingh H.L. 2011. Influence of retained cane number and pruning
- 543 time on grapevine yield components, fruit composition and vine phenology of Sauvignon Blanc vines.
- 544 Aust. J. Grape Wine Res. 17:258–262.
- 545 Verdugo-Vásquez N., Acevedo-Opazo C., Valdés-Gómez H., Araya-Alman M., Ingram B., García de
- 546 Cortázar-Atauri I. and Tisseyre B. 2016. Spatial variability of phenology in two irrigated grapevine
- 547 cultivar growing under semi-arid conditions. Precis. Agric.17:218–245.
- 548 Williams D.W., Andris H.L., Beede R.H., Luvisi D.A., Norton M.V.K. and Williams L.E. 1985.
- 549 Validation of a model for the growth and development of the Thompson Seedless grapevine. II
- 550 Phenology. Am. J. Enol. Vitic. 36:283–289.
- Williams L.E., Neja R.A., Meyer J.L., Yates L.A. and Walker E.L. 1991. Post harvest irrigation
 influences budbreak of "Perlette" grapevines. Hortscience 26:1081.
- 553 Yamane H., Ooka T., Jotatsu H., Hosaka Y., Sasaki R. and Tao R. 2011. Expressional regulation of
- 554 PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low
- temperature and dormancy-breaking reagent treatment. J Exp. Bot. 62:3481–3488.
- 556

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008

AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

557 **Table 1** Database summary for parameterizing and validating data for Californian (CA, United States) and Spanish locations. Weather station descriptors are

558 latitude, longitude, altitude, number of observation sites associated with each weather station and the mean distance between them. Data are shown for

559 Californian (www.cimis.water.ca.gov) and Spanish (www.ruralcat.net/web/guest/agrometeo.estacions and redarexplus.gobex.es/RedarexPlus/) weather

560 stations. Average bud break data are provided for the different observation years. CP is the average value for the Chill Portions accumulated in the observation

561 years from October 1 to March 31. Daily average maximum (T_{max}) and minimum (T_{min}) temperatures are from October 1 to March 31.

_	Weather stations										
		T -4:4 1-	T	A 14:4 1-	Number of	Mean distance from		Decidence		т	т
Location	Station name	(°)	Longitude (°)	(m)	observations	(Km)	Observation years	(DOY)	СР	1_{max}	1_{min}
Central	Manteca	37.83	-121.22	10	1	13	2009-2014	80	55	17.9	4 5
Vallev (CA)	Modesto	37.65	-121.19	11	1	13.5	2009-2011, 2013.	85	57	21.4	6.2
, uney (en)	110000510	0,100			-	1010	2014	00	0,		0.2
	Kesterson	37.23	-120.88	23	1	18.5	2009-2014	79	52	23.8	5.5
	Oakdale	37.73	-120.85	50	1	7	2009-2014	77	57	22.8	7.6
North Coast	Santa Rosa	38.40	-122.80	24	1	8	2012-2015	85	46	21.0	4.5
(CA)	Winsdor	38.53	-122.83	92	2	15.5	2007-2013, 2015	82	55	21.3	4.8
							2004-2011, 2014,				
	Carneros	38.22	-122.35	2	3	1.5	2015	74	55	21.0	6.1
							2010, 2012-2016				
	Oakville	38.43	-122.41	58	1	1.5		78	50	22.6	6.7
Central	San Benito	36.85	-121.36	104	1	2.5	2014	65	35	20.8	4.6
Coast (CA)											
South	Nipomo	35.03	-120.56	78	1	16	2010, 2011, 2014-	61	47	19.4	8.8
Central							2016				
Coast (CA)											
Spain	Raïmat	41.68	0.45	286	1	5.4	2013	95	49	13.9	3.8
	Sant Sadurni	41.43	1.79	164	1	5	2006, 2012, 2014,	92	42	18.7	6.6
	d'Anoia						2015				
	Badajoz	35.51	-6.39	188	1	0.5	2014-2016	76	59	22.3	8.8

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

563 Table 2 Example of model fit and performance for overlap estimates at one potential Cr. AIC_C was

- used to evaluate the models used for the parameterization data set. R² and RMSE were used to
- 565 evaluate the relationship between the observed and predicted bud break values by applying fitted
- 566 model parameters for parameterization and validation datasets. Only significant (p-value < 0.05)
- 567 models are shown.

C	Quarlan	Model parameters			Para	Vali	Validation		
(CP)	Overiup	ß.	ß.	ß	AIC	\mathbf{P}^2	RMSE	\mathbf{P}^2	RMSE
(01)	(/0)	D_I	D_2	133	AICC	Λ	(days)	Λ	(days)
9	25	6992	8152	0.0729	352.28	0.53	9.45	0.68	7.87
9	30	7800	7751	0.0813	359.77	0.47	10.33	0.64	9.50
9	40	6110	9657	0.0463	346.62	0.54	8.86	0.69	7.32
9	50	2141	14041	0.0252	400.53	0.56	16.78	0.62	16.44
9	75	8856	11358	0.0636	386.61	0.44	14.17	0.42	14.47

568 AIC_c, Akaike Information Criterion; R², R-square; RMSE, Root Mean Square Error measured. 569

570

571

572 **Table 3** Model fit and performance for estimates of the chilling requirement with the same 40%

573 overlap. Evaluation of R² and RMSE for parameterization and calibration datasets evaluating the

574 relation between the observed and predicted bud break values by applying fitted model parameters.

575 All the model fits were significant, with p-value < 0.05.

C		M	odel parai	meters	Param	eterization	Va	Validation	
(CP)	Overlap (%)	ß	\mathcal{B}_2	β_3	R^2	RMSE	\mathbf{p}^2	RMSE	
(CP)		D_l				(days)	Λ	(days)	
7	40	8591	9236	0.0833	0.48	11.67	0.49	11.72	
8	40	7096	9242	0.0577	0.48	10.80	0.65	8.84	
9	40	6110	9657	0.0463	0.54	8.86	0.69	7.32	
10	40	2836	12225	0.0292	0.60	12.63	0.61	11.78	
11	40	7275	8615	0.0662	0.55	10.17	0.61	9.99	

576 R², R-square; RMSE, Root Mean Square Error measured.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

578

579

580 Figure 1 Location of the weather stations (red dots) used in the study in California (A) (USA) and581 Spain (B).

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

Observations ordered from earlier to later bud break

583

Figure 2 Day of the year bud break subsets for Chardonnay, ordered from earliest to latest bud break
 observations, used for parameterizing: P (42 observations, filled symbols), and validating: V (39
 observations, open symbols) the Chill Overlap Model.

587

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

589

590 Figure 3 Explanation of the overlap between the chill and heat phases implied in the Chill Overlap 591 Model. C_1 , C_2 and C_3 exemplify the different accumulation times for chill, while H_1 , H_2 and H_3 show 592 the different accumulation times for heat. The rectangles with solid lines show measures of fixed 593 chill/heat, and the rectangles with dashed lines show variable amounts of accumulated chill/heat. The 594 overlap where the additional accumulated chill (CP, Chilling Portions calculated with Dynamic Chill 595 Accumulation Model) reduces the heat sum (GDH, Growing Degree Hour determined with GDH 596 ASYMCUR Model) occurs when C_a : chill accumulated from C_2 to C_3 , and H_r : heat accumulated from 597 H₁ to H₂, are determined simultaneously for the same period.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

599

600 **Figure 4A** Chill Overlap Model fit parameterization. The chill requirement (C_r) was 9 CP and an 601 overlap of 40 % between the chill accumulation (C_a) and the heat accumulation (H_a) phases. Model 602 accuracy was evaluated at an AIC_C value of 346.62.

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

604

Figure 4B Predicted and observed bud break day of the year based on the Chill Overlap Model using
 parameterization data (R²=0.54 and RMSE=8.86 days). The fitted values were determined after 9 CP

607 corresponding to the chill requirement (C_r) were met, with an overlap of 40 %.

608

American Journal of Enology and Viticulture (AJEV). doi: 10.5344/ajev.2018.18008 AJEV Papers in Press are peer-reviewed, accepted articles that have not yet been published in a print issue of the journal or edited or formatted, but may be cited by DOI. The final version may contain substantive or nonsubstantive changes.

610

611 Figure 5 Predicted and observed bud break day of the year evaluated with the best performance fit

612 model parameters using the validating dataset (R²=0.69 and RMSE=7.32 days). The chill requirement

613 (C_r) was 9 CP, with a 40 % chill/heat overlap.