Integrated Understanding of Fruit Tree Carbon Budgets and Growth through Crop Modeling

Category I publications

46.*       DeJong, T.M. and J. Goudriaan. 1989. Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double‑sigmoid growth pattern. Journal of the American Society for Horticultural Science 114(5):800‑804.

78.*       DeJong, Theodore M. and Yaffa L. Grossman.  1994.  A supply and demand approach to modeling annual reproductive and vegetative growth of deciduous fruit trees.  HortScience 29(12):1435-1442. 

80.*       Grossman, Yaffa L. and Theodore M. DeJong. 1994.  PEACH: A simulation model of reproductive and vegetative growth in peach trees.  Tree Physiology 14: 329-345.

98.*       Berman, M.E., A. Rosati, L. Pace, Y.L. Grossman, and T.M. DeJong.  1998.  Using simulation modeling to estimate the relationship between date of fruit maturity and yield potential in peach.  Fruit Varieties Journal 52(4):229-235.

102.*     DeJong, T.M.  1999.  Developmental and environmental control of dry-matter partitioning in peach. HortScience 34(6):1037-1040.

108.*     Rosati, A., F.W. Badeck, and T.M. DeJong.  2001.  Estimating canopy light interception and absorption using leaf mass per unit leaf area in Solanum melongena.  Annals of Botany 88:101-109.

112.*     Rufat, Josep and Theodore M. DeJong.  2001.  Estimating seasonal nitrogen dynamics in peach trees in response to nitrogen availability.  Tree Physiology 21:1133-1140. 

119.*     Rosati, A. and T.M. DeJong. 2003. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Annals of Botany 91:869-877.

135*.     Allen, M.T., P. Prusinkiewicz, and T.M. DeJong. 2005.  Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model.  New Phytologist 166:869-888.

147.*   Allen, M.T., P. Prusinkiewicz, R.R. Favreau, and T.M. DeJong.  2007.  L-PEACH, an L-system-based model for simulating architecture, carbohydrate source-sink interactions and physiological responses of growing trees.  In: Functional-Structural Plant Modelling in Crop Production, J. Vos, L. Marcelis, P. de Visser and P. Struik eds. Frontis, Wageningen, Netherlands. p 139-150.

149.*     Prusinkiewicz, P., M. Allen, A. Escobar-Gutierrez and T.M. DeJong.  2007.  Numerical methods for transport-resistance sink-source allocation models.  In: Functional-Structural Plant Modelling in Crop Production, J. Vos, L. Marcelis, P. de Visser and P. Struik eds. Frontis, Wageningen, Netherlands. p 123-138.

159.*     Lopez, G., R. R. Favreau, C. Smith, E. Costes, P. Prusinkiewicz and T. M. DeJong. 2008. Integrating simulation of architectural development and source–sink behaviour of peach trees by incorporating Markov chains and physiological organ function submodels into L-PEACH. Functional Plant Biology 35:761-771.

163.*     Lopez, G., R. R. Favreau, C. Smith, and T. M. DeJong. 2010. L-PEACH: A Computer-based Model to Understand How Peach Trees Grow.  HorTechnology 20: 983-990.

170.*     DeJong, T.M., D. Da Silva, J. Vos and A.J. Escobar-Gutierrez. 2011. Using functional-structural plant models to study, understand and integrate plant development and ecophysiology.  Annals of Botany 108:987-990.

171.*     Da Silva, D, R. Favreau, I. Auzmendi, T. DeJong. 2011.  Linking water stress effects on carbon partitioning by introducing a xylem circuit into L-PEACH.  Annals of Botany 108:1135-1145.

189.*     Da Silva, D., L. Qin, C. DeBuse and T. M. DeJong, 2014. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees. Annals of Botany 114:643-652.

194.*     Pope, K.S., D. Da Silva, P.H. Brown and T.M. DeJong. 2014. A biologically based approach to modeling spring phenology in temperate deciduous trees. Agricultural and Forest Meteorology 198:15–23

200*     Reyes, F, T. DeJong, P. Franceschi, M. Tagliavini and D. Gianelle. 2016. Growth potential and periods of resource limitation in apple trees. Frontiers in Plant Science doi: 10.3389/fpls.2016.00233

209*     Prats-Llinàs, M.T., T.M. DeJong, K.S. Jarvis-Shean, J. Girona, and J. Marsal. 2019. Performance of a chill overlap model for predicting budbreak in Chardonnay grapevines over a broad range of growing conditions. American Journal of Enology and Viticulture 70: 50-59.            doi: 10.5344/ajev.2018.18008 

213*     DeJong, T.M. 2019. Opportunities and challenges in fruit tree and orchard modelling. Eur. J. Hortic. Sci. 84:117-123.

215*     Sperling, O., T. Kamai, A. Tixier, A. Davidson, K. Jarvis-Shean, E. Raveh, T.M. DeJong and M.A. Zwieniecki. (2019).  Predicting bloom dates by temperature mediated kinetics of carbohydrate metabolism in deciduous fruit trees.  Agricultural and Forest Meteorology 276-277 107643 https://doi.org/10.1016/j.agrformet.2019.107643

216      DeJong, T. (2019) “Advances in understanding fruit tree growth.” in: Achieving sustainable          cultivation of temperate zone tree fruits and berries Volume 1 : Physiology, genetics and       cultivation. ed., G. Lang, (Burleigh Dodds Science Publishing. Cambridge, UK, ISBN-13:     9781786762085) p. 73-92.

218*     Prats-Llinàs, M. T., H. Nieto, T. M. DeJong, J. Girona, J. Marsal. 2020.  Using forced regrowth to    manipulate Chardonnay grapevine (Vitis vinifera L.) development to evaluate phenological stage      responses to temperature. Scientia Horticulturae 262:109065

221*     Grisafi, F., T. M. DeJong. and S. Tombesi. 2021. Fruit tree crop models: an update. Tree   Physiology 00, 1–17 https://doi.org/10.1093/treephys/tpab126

223*     DeJong, T. M. 2022. Simulating fruit tree growth, structure and physiology using L-Systems.        Crop Science

Category II publications

6.            DeJong, T.M. and J. Goudriaan.  1989.  Modeling the carbohydrate economy of peach fruit growth and crop production.  Acta Horticulturae 254:103-108. 

7.            DeJong, T.M., R.S. Johnson, and S.P. Castagnoli.  1990.  Computer simulation of the carbohydrate economy of peach crop growth.  Acta Horticulturae 276:97-104. 

9.            DeJong, T.M. and Y.L. Grossman.  1992.  Modelling the seasonal carbon economy of deciduous tree crops.  Acta Horticulturae 313:21-28. 

10.          DeJong, T.M., Y.L. Grossman, S.F. Vosburg, and L.S. Pace.  1996.  PEACH:  A user friendly peach tree growth and yield simulation model for research and education.  Acta Horticulturae 416:199-206. 

15.          DeJong, T.M.  1998.  Using organ growth potentials to identify physiological and horticultural limitations to yield.  Acta Horticulturae 465:293-302.

16.         Esparza, G., T.M. DeJong, and Y.L. Grossman.  1998.  Modeling the vegetative and reproductive growth of almonds.  Acta Horticulturae 470:324-331.

19.          Esparza, G., T.M. DeJong, and Y.L. Grossman.  1999.  Modifying ‘peach’ to model the vegetative and reproductive growth of almonds.  Acta Horticulturae 499:91-98.

20.          Mimoun, M. Ben and T.M. DeJong. 1999.  Using the relation between growing degree hours and harvest date to estimate run-times for peach: A tree growth and yield simulation model. Acta Horticulturae 499:107-114.

21.          Rufat, Josep and Theodore M. DeJong. 1999.  Modeled seasonal pattern of nitrogen requirements of mature, cropping peach trees (Prunus persica (L.) Batsch).  Acta Horticulturae 499:129-135.

22.          DeJong, T.M. 1999.  Peach:  peach crop yield and tree growth simulation model for research and education.   Acta Horticulturae 499:193-200.

23.          DeJong, T.M. 2002. Editor. Proceedings of the Sixth International Symposium on Computer Modelling Fruit Research and Orchard Management. Acta Horticulturae 584:1-265.

24.          Esparza, G., C. Gallegos, A. Rumayor, and T.M. DeJong. 2002. Modeling productivity of Zacatecan peaches. Acta H   orticulturae 584:21-28.

25.          Allen, M.T., T.M. DeJong, and P. Prusinkiewicz. 2002. Using L-systems to model carbon transport and partitioning in developing peach trees. Acta Horticulturae 584:29-34.

26.          Mariscal, M.J., K.R. Day, B.Basile, and T.M. DeJong. 2002. Modeling the vegetative and reproductive growth of plums. Acta Horticulturae 584: 35-42.

27.          Rosati. A., T.M. DeJong, and G. Esparza. 2002. Physiological basis for light use efficiency models. Acta Horticulturae 584: 89-94.

32.          Allen, M., T. DeJong, and P. Prusinkiewicz. 2006.  L-PEACH, an L-Systems based model for simulating the architecture and carbon partitioning of growing fruit trees.  Acta Hort. 707:71-76.

35.          Giuliani, R., E. Muzzi, H. Sinoquet, F. Nerozzi, and T.M. DeJong,  2006  Probabilistic reconstruction of a peach tree canopy and simulation of its photosynthetic activity.  Acta Horticulturae 713:203-208.

37.          DeJong, T.M., R. Favreau, M. Allen and P. Prusinkiewicz 2008. Using computer technology to study, understand and teach how trees grow. Acta Hort 772 : 143-150.  

41.          Smith, C., E. Costes, R. Favreau, G. Lopez and T. DeJong. 2008.  Improving the architecture of simulated trees in L-PEACH by integrating Markov chains and responses to pruning. Acta Hort. 803: 201-208.

42.          Lopez, G., C. Smith, R. Favreau and T. DeJong. 2008.  Using L-PEACH for dynamic simulation of source-sink behavior of peach trees: effects of date of thinning on fruit growth. Acta Hort 803:209-216.

48.          DeJong, T.M., R. Favreau, Y.L. Grossman and G. Lopez. 2011.  Using concept-based computer simulation modeling to study and develop an integrated understanding of tree crop physiology. Acta Hort 903:751-757.

51.          Lopez, G., K.R. Day and T.M. DeJong. 2011. Why do early high spring temperatures reduce peach fruit size and yield at harvest? Acta Hort. 903:1055-1062.

65.          Lopez, G., Girona, J., Marsal, J. and DeJong, T.M. 2015. Developing a physiological basis for modeling peach canopy photosynthesis under water stress conditions. Acta Hort. 1068:203-209

66.          Da Silva, D., Favreau, R.O., Tombesi, S. and DeJong, T.M. 2015. Modelling size-controlling rootstock effects on peach tree growth and development using L-PEACH-H. Acta Hort. 1068:227-233

70.          DeJong, T.M. 2016. Demystifying carbohydrate allocation to storage in fruit trees. Acta Hort 1130:329-334

71.       T.M. DeJong, D. Da Silva, C. Negron, M. Cieslak, P. Prusinkiewicz. 2017. The L-ALMOND model: a functional-structural virtual tree model of almond tree architectural growth, carbohydrate dynamics over multiple years () Acta Hort 1160: 43-49

72.       K.S. Pope, T.M. DeJong. 2017. Modeling spring phenology and chilling requirements using the chill overlap framework.  Acta Hort 1160:179-183.

73.       Auzmendi, I., J. Hanan, D. Da Silva, R. Favreau, T.M. DeJong. 2017. Modeling final leaf length as a function of carbon availability during the elongation period.  Acta Hort 1160:75-81.

74.        DeJong, T.M. 2017. The understanding of carbohydrate budgets in fruit trees made easy: what we know and ideas about what we need to know. Acta Hort. 1177:29-39.

77.       G. Lopez, D. Da Silva, I. Auzmendi, R.R. Favreau and T.M. DeJong. 2018. Demonstrative simulations of L-PEACH: a computer based model to understand how peach trees grow. Acta Hort. 1228 13-19.

78.       G. Lopez, C. Negron, M. Cieslak, E. Costes, D. Da Silva and T.M. DeJong. 2018. Simulation of tree growth for three almond cultivars with contrasting architecture with the L-ALMOND model, Acta Hort. 1228 29-35